BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17587384)

  • 1. Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory.
    Rathinasabapathi B; Rangasamy M; Froeba J; Cherry RH; McAuslane HJ; Capinera JL; Srivastava M; Ma LQ
    New Phytol; 2007; 175(2):363-369. PubMed ID: 17587384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic accumulation by ferns: a field survey in southern China.
    Wei CY; Wang C; Sun X; Wang WY
    Environ Geochem Health; 2007 Jun; 29(3):169-77. PubMed ID: 17256100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of soil properties on arsenic hyperaccumulation in Pteris vittata and Pityrogramma calomelanos var. austroamericana.
    Xu W; Kachenko AG; Singh B
    Int J Phytoremediation; 2010 Feb; 12(2):174-87. PubMed ID: 20734614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic hyperaccumulation by Pteris vittata and Pityrogramma calomelanos: a comparative study of uptake efficiency in arsenic-treated soils and waters.
    Yong JW; Tan SN; Ng YF; Low KK; Peh SF; Chua JC; Lim AA
    Water Sci Technol; 2010; 61(12):3041-9. PubMed ID: 20555200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of phytase from three ferns with differing arsenic tolerance.
    Tu S; Ma L; Rathinasabapathi B
    Plant Physiol Biochem; 2011 Feb; 49(2):146-50. PubMed ID: 21131209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions.
    Srivastava M; Santos J; Srivastava P; Ma LQ
    Bioresour Technol; 2010 Apr; 101(8):2691-9. PubMed ID: 20044253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water.
    Natarajan S; Stamps RH; Ma LQ; Saha UK; Hernandez D; Cai Y; Zillioux EJ
    J Hazard Mater; 2011 Jan; 185(2-3):983-9. PubMed ID: 21051137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system.
    Fayiga AO; Ma LQ; Santos J; Rathinasabapathi B; Stamps B; Littell RC
    Int J Phytoremediation; 2005; 7(3):231-40. PubMed ID: 16285413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L.
    Cao X; Ma LQ; Shiralipour A
    Environ Pollut; 2003; 126(2):157-67. PubMed ID: 12927487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic.
    Srivastava M; Ma LQ; Singh N; Singh S
    J Exp Bot; 2005 May; 56(415):1335-42. PubMed ID: 15781440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.).
    Bondada BR; Tu S; Ma LQ
    Sci Total Environ; 2004 Oct; 332(1-3):61-70. PubMed ID: 15336891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoextraction and phytofiltration of arsenic.
    Rozas MA; Alkorta I; Garbisu C
    Rev Environ Health; 2006; 21(1):43-56. PubMed ID: 16700429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperaccumulation and transport mechanism of thallium and arsenic in brake ferns (Pteris vittata L.): A case study from mining area.
    Wei X; Zhou Y; Tsang DCW; Song L; Zhang C; Yin M; Liu J; Xiao T; Zhang G; Wang J
    J Hazard Mater; 2020 Apr; 388():121756. PubMed ID: 31818671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Cao X; Ma LQ; Tu C
    Environ Pollut; 2004; 128(3):317-25. PubMed ID: 14720474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the dietary arsenic exposures from ingestion of contaminated soil and hyperaccumulating Pteris ferns used in a residential phytoremediation project.
    Ebbs S; Hatfield S; Nagarajan V; Blaylock M
    Int J Phytoremediation; 2010 Jan; 12(1):121-32. PubMed ID: 20734633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T
    Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Al Agely A; Sylvia DM; Ma LQ
    J Environ Qual; 2005; 34(6):2181-6. PubMed ID: 16275719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terrestrial Invertebrate Arsenic Accumulation Associated With an Arsenic Hyperaccumulating Fern, Pteris vittata (Polypodiales: Pteridaceae).
    Jaffe BD; Ketterer ME; Hofstetter RW
    Environ Entomol; 2016 Oct; 45(5):1306-1315. PubMed ID: 27516432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.