These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 17587562)
1. Structural genomics: keeping up with expanding knowledge of the protein universe. Grabowski M; Joachimiak A; Otwinowski Z; Minor W Curr Opin Struct Biol; 2007 Jun; 17(3):347-53. PubMed ID: 17587562 [TBL] [Abstract][Full Text] [Related]
2. The impact of structural genomics: the first quindecennial. Grabowski M; Niedzialkowska E; Zimmerman MD; Minor W J Struct Funct Genomics; 2016 Mar; 17(1):1-16. PubMed ID: 26935210 [TBL] [Abstract][Full Text] [Related]
3. Defining the fold space of membrane proteins: the CAMPS database. Martin-Galiano AJ; Frishman D Proteins; 2006 Sep; 64(4):906-22. PubMed ID: 16802318 [TBL] [Abstract][Full Text] [Related]
4. Progress of structural genomics initiatives: an analysis of solved target structures. Todd AE; Marsden RL; Thornton JM; Orengo CA J Mol Biol; 2005 May; 348(5):1235-60. PubMed ID: 15854658 [TBL] [Abstract][Full Text] [Related]
5. Automatic target selection for structural genomics on eukaryotes. Liu J; Hegyi H; Acton TB; Montelione GT; Rost B Proteins; 2004 Aug; 56(2):188-200. PubMed ID: 15211504 [TBL] [Abstract][Full Text] [Related]
6. The impact of structural genomics: expectations and outcomes. Chandonia JM; Brenner SE Science; 2006 Jan; 311(5759):347-51. PubMed ID: 16424331 [TBL] [Abstract][Full Text] [Related]
7. Expectations from structural genomics revisited: an analysis of structural genomics targets. Saqi MA; Wild DL Am J Pharmacogenomics; 2005; 5(5):339-42. PubMed ID: 16196503 [TBL] [Abstract][Full Text] [Related]
8. Target selection for structural genomics: an overview. Marsden RL; Orengo CA Methods Mol Biol; 2008; 426():3-25. PubMed ID: 18542854 [TBL] [Abstract][Full Text] [Related]
9. Progress towards mapping the universe of protein folds. Grant A; Lee D; Orengo C Genome Biol; 2004; 5(5):107. PubMed ID: 15128436 [TBL] [Abstract][Full Text] [Related]
10. Structural similarity to bridge sequence space: finding new families on the bridges. Shah PK; Aloy P; Bork P; Russell RB Protein Sci; 2005 May; 14(5):1305-14. PubMed ID: 15840833 [TBL] [Abstract][Full Text] [Related]
11. MODBASE, a database of annotated comparative protein structure models, and associated resources. Pieper U; Eswar N; Braberg H; Madhusudhan MS; Davis FP; Stuart AC; Mirkovic N; Rossi A; Marti-Renom MA; Fiser A; Webb B; Greenblatt D; Huang CC; Ferrin TE; Sali A Nucleic Acids Res; 2004 Jan; 32(Database issue):D217-22. PubMed ID: 14681398 [TBL] [Abstract][Full Text] [Related]
12. Coverage of protein sequence space by current structural genomics targets. O'Toole N; Raymond S; Cygler M J Struct Funct Genomics; 2003; 4(2-3):47-55. PubMed ID: 14649288 [TBL] [Abstract][Full Text] [Related]
14. The RCSB PDB information portal for structural genomics. Kouranov A; Xie L; de la Cruz J; Chen L; Westbrook J; Bourne PE; Berman HM Nucleic Acids Res; 2006 Jan; 34(Database issue):D302-5. PubMed ID: 16381872 [TBL] [Abstract][Full Text] [Related]
15. The structural genomics experimental pipeline: insights from global target lists. O'Toole N; Grabowski M; Otwinowski Z; Minor W; Cygler M Proteins; 2004 Aug; 56(2):201-10. PubMed ID: 15211505 [TBL] [Abstract][Full Text] [Related]
16. SUPFAM: a database of sequence superfamilies of protein domains. Pandit SB; Bhadra R; Gowri VS; Balaji S; Anand B; Srinivasan N BMC Bioinformatics; 2004 Mar; 5():28. PubMed ID: 15113407 [TBL] [Abstract][Full Text] [Related]
17. The GTOP database in 2009: updated content and novel features to expand and deepen insights into protein structures and functions. Fukuchi S; Homma K; Sakamoto S; Sugawara H; Tateno Y; Gojobori T; Nishikawa K Nucleic Acids Res; 2009 Jan; 37(Database issue):D333-7. PubMed ID: 18987007 [TBL] [Abstract][Full Text] [Related]
18. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. Radauer C; Bublin M; Wagner S; Mari A; Breiteneder H J Allergy Clin Immunol; 2008 Apr; 121(4):847-52.e7. PubMed ID: 18395549 [TBL] [Abstract][Full Text] [Related]
19. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches. Chandonia JM; Brenner SE Proteins; 2005 Jan; 58(1):166-79. PubMed ID: 15521074 [TBL] [Abstract][Full Text] [Related]
20. Structural genomics is the largest contributor of novel structural leverage. Nair R; Liu J; Soong TT; Acton TB; Everett JK; Kouranov A; Fiser A; Godzik A; Jaroszewski L; Orengo C; Montelione GT; Rost B J Struct Funct Genomics; 2009 Apr; 10(2):181-91. PubMed ID: 19194785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]