These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17587568)

  • 1. Optimization of beta-carotene production by Rhodotorula glutinis DM28 in fermented radish brine.
    Malisorn C; Suntornsuk W
    Bioresour Technol; 2008 May; 99(7):2281-7. PubMed ID: 17587568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of beta-carotene-enriched rice bran using solid-state fermentation of Rhodotorula glutinis.
    Roadjanakamolson M; Suntornsuk W
    J Microbiol Biotechnol; 2010 Mar; 20(3):525-31. PubMed ID: 20372023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. beta-Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant.
    Bhosale P; Gadre RV
    J Ind Microbiol Biotechnol; 2001 Jun; 26(6):327-32. PubMed ID: 11571614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of beta-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology.
    Wang SL; Sun JS; Han BZ; Wu XZ
    J Food Sci; 2007 Oct; 72(8):M325-9. PubMed ID: 17995613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of high hydrostatic pressure on the growth and beta-carotene production of Rhodotorula glutinis.
    Wang SL; Chen DJ; Deng BW; Wu XZ
    Yeast; 2008 Apr; 25(4):251-7. PubMed ID: 18338316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of beta-carotene in spray dried preparation of Rhodotorula glutinis mutant 32.
    Bhosale P; Jogdand VV; Gadre RV
    J Appl Microbiol; 2003; 95(3):584-90. PubMed ID: 12911707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of aeration and agitation regimes on lipase production by newly isolated Rhodotorula mucilaginosa-MTCC 8737 in stirred tank reactor using molasses as sole production medium.
    Potumarthi R; Subhakar C; Vanajakshi J; Jetty A
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):700-10. PubMed ID: 18574564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass production from glutamate fermentation wastewater by the co-culture of Candida halophila and Rhodotorula glutinis.
    Zheng S; Yang M; Yang Z; Yang Q
    Bioresour Technol; 2005 Sep; 96(13):1522-4. PubMed ID: 15939282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot-scale production of microbial lipid using starch wastewater as raw material.
    Xue F; Gao B; Zhu Y; Zhang X; Feng W; Tan T
    Bioresour Technol; 2010 Aug; 101(15):6092-5. PubMed ID: 20371176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis.
    Xue F; Miao J; Zhang X; Tan T
    Appl Biochem Biotechnol; 2010 Jan; 160(2):498-503. PubMed ID: 18931954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of temperature and illumination conditions for enhanced beta-carotene production by mutant 32 of Rhodotorula glutinis.
    Bhosale P; Gadre RV
    Lett Appl Microbiol; 2002; 34(5):349-53. PubMed ID: 11967057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.
    Yen HW; Chang JT
    J Biosci Bioeng; 2015 May; 119(5):580-4. PubMed ID: 25454603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of beta-carotene by a mutant of Rhodotorula glutinis.
    Bhosale PB; Gadre RV
    Appl Microbiol Biotechnol; 2001 May; 55(4):423-7. PubMed ID: 11398921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of carotenoid production from hyper-producing Rhodotorula glutinis mutant 32 by a factorial approach.
    Bhosale P; Gadre RV
    Lett Appl Microbiol; 2001 Jul; 33(1):12-6. PubMed ID: 11442807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentative Production of β-Carotene from Sugarcane Bagasse Hydrolysate by Rhodotorula glutinis CCT-2186.
    Díaz-Ruiz E; Balbino TR; Dos Santos JC; Kumar V; da Silva SS; Chandel AK
    Appl Biochem Biotechnol; 2024 Jul; 196(7):4188-4204. PubMed ID: 37914962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation.
    Zhang Z; Zhang X; Tan T
    Bioresour Technol; 2014 Apr; 157():149-53. PubMed ID: 24549236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Phaffia rhodozyma continuous culture through response surface methodology.
    Vázquez M; Martin AM
    Biotechnol Bioeng; 1998 Feb; 57(3):314-20. PubMed ID: 10099208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of cell growth rate by light irradiation in the cultivation of Rhodotorula glutinis.
    Yen HW; Zhang Z
    Bioresour Technol; 2011 Oct; 102(19):9279-81. PubMed ID: 21757336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reutilization of residual glycerin for the produce β-carotene by Rhodotorula minuta.
    da Silva SRS; Stamford TCM; Albuquerque WWC; Vidal EE; Stamford TLM
    Biotechnol Lett; 2020 Mar; 42(3):437-443. PubMed ID: 31933056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of β-carotene content, cell physiology and morphology of the yellow yeast Rhodotorula glutinis mutant 400A15 using flow cytometry.
    Cutzu R; Clemente A; Reis A; Nobre B; Mannazzu I; Roseiro J; Lopes da Silva T
    J Ind Microbiol Biotechnol; 2013 Aug; 40(8):865-75. PubMed ID: 23660998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.