These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 17587692)

  • 1. Modulation of substrate preference of thermus maltogenic amylase by mutation of the residues at the interface of a dimer.
    Park SH; Kang HK; Shim JH; Woo EJ; Hong JS; Kim JW; Oh BH; Lee BH; Cha H; Park KH
    Biosci Biotechnol Biochem; 2007 Jun; 71(6):1564-7. PubMed ID: 17587692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of the starch components amylopectin and amylose by barley α-amylase 1: role of surface binding site 2.
    Nielsen JW; Kramhøft B; Bozonnet S; Abou Hachem M; Stipp SL; Svensson B; Willemoës M
    Arch Biochem Biophys; 2012 Dec; 528(1):1-6. PubMed ID: 22902860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenesis of Ala290, which modulates substrate subsite affinity at the catalytic interface of dimeric ThMA.
    Park SH; Cha H; Kang HK; Shim JH; Woo EJ; Kim JW; Park KH
    Biochim Biophys Acta; 2005 Aug; 1751(2):170-7. PubMed ID: 15975859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic synthesis and properties of highly branched rice starch amylose and amylopectin cluster.
    Lee CK; Le QT; Kim YH; Shim JH; Lee SJ; Park JH; Lee KP; Song SH; Auh JH; Lee SJ; Park KH
    J Agric Food Chem; 2008 Jan; 56(1):126-31. PubMed ID: 18072737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the multisubstrate specificity of Thermus maltogenic amylase by truncation of the N-terminal domain and by a salt-induced shift of the monomer/dimer equilibrium.
    Kim TJ; Nguyen VD; Lee HS; Kim MJ; Cho HY; Kim YW; Moon TW; Park CS; Kim JW; Oh BH; Lee SB; Svensson B; Park KH
    Biochemistry; 2001 Nov; 40(47):14182-90. PubMed ID: 11714271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST
    J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other.
    Lee HS; Kim MS; Cho HS; Kim JI; Kim TJ; Choi JH; Park C; Lee HS; Oh BH; Park KH
    J Biol Chem; 2002 Jun; 277(24):21891-7. PubMed ID: 11923309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin.
    Kamasaka H; Sugimoto K; Takata H; Nishimura T; Kuriki T
    Appl Environ Microbiol; 2002 Apr; 68(4):1658-64. PubMed ID: 11916682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of rice starch by selective degradation of amylose using alkalophilic Bacillus cyclomaltodextrinase.
    Auh JH; Chae HY; Kim YR; Shim KH; Yoo SH; Park KH
    J Agric Food Chem; 2006 Mar; 54(6):2314-9. PubMed ID: 16536613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant α-glucan phosphatases SEX4 and LSF2 display different affinity for amylopectin and amylose.
    Wilkens C; Auger KD; Anderson NT; Meekins DA; Raththagala M; Abou Hachem M; Payne CM; Gentry MS; Svensson B
    FEBS Lett; 2016 Jan; 590(1):118-28. PubMed ID: 26763114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase.
    Kramhøft B; Bak-Jensen KS; Mori H; Juge N; Nøhr J; Svensson B
    Biochemistry; 2005 Feb; 44(6):1824-32. PubMed ID: 15697208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of hydrolysis and transglycosylation activity of Thermus maltogenic amylase by combinatorial saturation mutagenesis.
    Oh SW; Jang MU; Jeong CK; Kang HJ; Park JM; Kim TJ
    J Microbiol Biotechnol; 2008 Aug; 18(8):1401-7. PubMed ID: 18756100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of rice starch in rice cake modified by Thermus scotoductus 4-alpha-glucanotransferase (TS alpha GTase).
    Seo NS; Roh SA; Auh JH; Park JH; Kim YR; Park KH
    J Food Sci; 2007 Aug; 72(6):C331-6. PubMed ID: 17995674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Isolation of thermophilic bacteria Thermus sp. YBJ-1 and cloning of amylase gene].
    Xiong PJ; Wen JJ
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):434-6. PubMed ID: 15971619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aleppo tannin: structural analysis and salivary amylase inhibition.
    Zajácz A; Gyémánt G; Vittori N; Kandra L
    Carbohydr Res; 2007 Apr; 342(5):717-23. PubMed ID: 17217934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple attack mechanism in the porcine pancreatic alpha-amylase hydrolysis of amylose and amylopectin.
    Mazur AK; Nakatani H
    Arch Biochem Biophys; 1993 Oct; 306(1):29-38. PubMed ID: 8215418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of C-terminal domains required for the maximal activity or for determination of substrate preference of maize branching enzymes.
    Hong S; Preiss J
    Arch Biochem Biophys; 2000 Jun; 378(2):349-55. PubMed ID: 10860552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of Geobacillus thermoleovorans.
    Mehta D; Satyanarayana T
    PLoS One; 2013; 8(9):e73612. PubMed ID: 24069213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of amylomaltase from thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans.
    Przylas I; Tomoo K; Terada Y; Takaha T; Fujii K; Saenger W; Sträter N
    J Mol Biol; 2000 Feb; 296(3):873-86. PubMed ID: 10677288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of beta-amylase activity by a fluorimetric 2-p-toluidinylnaphthalene-6-sulfonate flow-injection analysis (2, 6-TNS-FIA) method, using amylose and amylopectin as substrates.
    Batlle N; Carbonell JV; Sendra JM
    Biotechnol Bioeng; 2000 Jan; 67(2):127-33. PubMed ID: 10592509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.