These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 17587692)

  • 41. Utilization of enzyme mixtures to retard bread crumb firming.
    León AE; Durán E; Benedito De Barber C
    J Agric Food Chem; 2002 Mar; 50(6):1416-9. PubMed ID: 11879013
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antifirming effects of starch degrading enzymes in bread crumb.
    Goesaert H; Leman P; Bijttebier A; Delcour JA
    J Agric Food Chem; 2009 Mar; 57(6):2346-55. PubMed ID: 19239186
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase.
    Fujimoto N; Tanaka K; Suzuki T
    FEBS Lett; 2005 Mar; 579(7):1688-92. PubMed ID: 15757662
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site.
    Antikainen NM; Hergenrother PJ; Harris MM; Corbett W; Martin SF
    Biochemistry; 2003 Feb; 42(6):1603-10. PubMed ID: 12578373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural and catalytic roles of amino acid residues located at substrate-binding pocket in Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase.
    Chen JH; Tsai LC; Huang HC; Shyur LF
    Proteins; 2010 Oct; 78(13):2820-30. PubMed ID: 20635417
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine.
    Lee CC; Craig SP; Eakin AE
    Biochemistry; 1998 Mar; 37(10):3491-8. PubMed ID: 9521670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution.
    Kamitori S; Kondo S; Okuyama K; Yokota T; Shimura Y; Tonozuka T; Sakano Y
    J Mol Biol; 1999 Apr; 287(5):907-21. PubMed ID: 10222200
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amylose recognition and ring-size determination of amylomaltase.
    Roth C; Weizenmann N; Bexten N; Saenger W; Zimmermann W; Maier T; Sträter N
    Sci Adv; 2017 Jan; 3(1):e1601386. PubMed ID: 28097217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-wavelength colorimetric determination of large-ring cyclodextrin content for the cyclization activity of 4-α-glucanotransferase.
    Wang J; Wei R; Tian Y; Yang N; Xu X; Zimmermann W; Jin Z
    Carbohydr Polym; 2015 May; 122():329-35. PubMed ID: 25817676
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The action of a bacterial amylase on some modified substrates.
    Weill CE; Kaminsky M; Guerrera J
    Carbohydr Res; 1979 Aug; 73():337-41. PubMed ID: 113099
    [No Abstract]   [Full Text] [Related]  

  • 51. Action of porcine-pancreatic amylase on oxidized-reduced amylose of low degree of modification.
    Kainuma K; French D
    Carbohydr Res; 1982 Aug; 106(1):143-53. PubMed ID: 6181874
    [No Abstract]   [Full Text] [Related]  

  • 52. Enzymatically-gelled amylopectin-based substrates enable on-demand harvesting cells with preserving cell-to-cell connection using saliva.
    Sakai S; Liu Y; Taya M
    J Biosci Bioeng; 2013 Apr; 115(4):462-5. PubMed ID: 23177214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A kinetic method for the determination of number-average molecular weight of linear high polymer by using an exo-enzyme. Number-average molecular weights of various fractions of amylose determined by using gluc-amylase of Rhizopus delemar.
    Hiromi K; Ogawa K; Nakanishi N; Ono S
    J Biochem; 1966 Oct; 60(4):439-49. PubMed ID: 5970083
    [No Abstract]   [Full Text] [Related]  

  • 54. The determination of serum amylase, with particular reference to the use of beta-amylose as the substrate.
    ANDERSCH MA
    J Biol Chem; 1946 Dec; 166(2):705-10. PubMed ID: 20276185
    [No Abstract]   [Full Text] [Related]  

  • 55. Investigating the role of carbohydrate-binding module 34 in cyclomaltodextrinase from
    Aroob I; Javed M; Ahmad N; Aslam M; Rashid N
    3 Biotech; 2022 Jan; 12(1):25. PubMed ID: 35036273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Properties and applications of starch modifying enzymes for use in the baking industry.
    Park SH; Na Y; Kim J; Kang SD; Park KH
    Food Sci Biotechnol; 2018 Apr; 27(2):299-312. PubMed ID: 30263753
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of Geobacillus thermoleovorans.
    Mehta D; Satyanarayana T
    PLoS One; 2013; 8(9):e73612. PubMed ID: 24069213
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Association of novel domain in active site of archaic hyperthermophilic maltogenic amylase from Staphylothermus marinus.
    Jung TY; Li D; Park JT; Yoon SM; Tran PL; Oh BH; Janeček Š; Park SG; Woo EJ; Park KH
    J Biol Chem; 2012 Mar; 287(11):7979-89. PubMed ID: 22223643
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermus thermophilus as biological model.
    Cava F; Hidalgo A; Berenguer J
    Extremophiles; 2009 Mar; 13(2):213-31. PubMed ID: 19156357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of substrate preference of thermus maltogenic amylase by mutation of the residues at the interface of a dimer.
    Park SH; Kang HK; Shim JH; Woo EJ; Hong JS; Kim JW; Oh BH; Lee BH; Cha H; Park KH
    Biosci Biotechnol Biochem; 2007 Jun; 71(6):1564-7. PubMed ID: 17587692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.