BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 17587697)

  • 1. Identification of the putative proton donor residue of lacto-N-biose phosphorylase (EC 2.4.1.211).
    Nishimoto M; Kitaoka M
    Biosci Biotechnol Biochem; 2007 Jun; 71(6):1587-91. PubMed ID: 17587697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum.
    Kitaoka M; Tian J; Nishimoto M
    Appl Environ Microbiol; 2005 Jun; 71(6):3158-62. PubMed ID: 15933016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of galacto-N-biose phosphorylase from Clostridium perfringens ATCC13124.
    Nakajima M; Nihira T; Nishimoto M; Kitaoka M
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):465-71. PubMed ID: 18183385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of lacto-N-Biose I phosphorylase from Vibrio vulnificus CMCP6.
    Nakajima M; Kitaoka M
    Appl Environ Microbiol; 2008 Oct; 74(20):6333-7. PubMed ID: 18723650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution to enhance thermostability of galacto-N-biose/lacto-N-biose I phosphorylase.
    Koyama Y; Hidaka M; Nishimoto M; Kitaoka M
    Protein Eng Des Sel; 2013 Nov; 26(11):755-61. PubMed ID: 24065834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum.
    Nishimoto M; Kitaoka M
    Appl Environ Microbiol; 2007 Oct; 73(20):6444-9. PubMed ID: 17720833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of allosteric control in glycogen phosphorylase.
    Hudson JW; Golding GB; Crerar MM
    J Mol Biol; 1993 Dec; 234(3):700-21. PubMed ID: 8254668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of galacto-N-biose/lacto-N-biose I phosphorylase: a large deformation of a TIM barrel scaffold.
    Hidaka M; Nishimoto M; Kitaoka M; Wakagi T; Shoun H; Fushinobu S
    J Biol Chem; 2009 Mar; 284(11):7273-83. PubMed ID: 19124470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains.
    Kim GB; Miyamoto CM; Meighen EA; Lee BH
    Appl Environ Microbiol; 2004 Sep; 70(9):5603-12. PubMed ID: 15345449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of glutamine fructose-6-phosphate amidotransferase (EC 2.6.1.16) and N-acetylglucosamine metabolism in Bifidobacterium.
    Foley S; Stolarczyk E; Mouni F; Brassart C; Vidal O; Aïssi E; Bouquelet S; Krzewinski F
    Arch Microbiol; 2008 Feb; 189(2):157-67. PubMed ID: 17943273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two distinct alpha-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates.
    Ashida H; Miyake A; Kiyohara M; Wada J; Yoshida E; Kumagai H; Katayama T; Yamamoto K
    Glycobiology; 2009 Sep; 19(9):1010-7. PubMed ID: 19520709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of β-galactoside phosphorylases with diverging acceptor specificities.
    Chen C; Soetaert W; Desmet T
    Enzyme Microb Technol; 2011 Jun; 49(1):59-65. PubMed ID: 22112272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional characterization of the Drosophila glycogen phosphorylase gene.
    Tick G; Cserpán I; Dombrádi V; Mechler BM; Török I; Kiss I
    Biochem Biophys Res Commun; 1999 Apr; 257(1):34-43. PubMed ID: 10092506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoenzymatic synthesis of lacto-N-tetrasaccharide and sialyl lacto-N-tetrasaccharides.
    Yao W; Yan J; Chen X; Wang F; Cao H
    Carbohydr Res; 2015 Jan; 401():5-10. PubMed ID: 25464075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure.
    Wada J; Ando T; Kiyohara M; Ashida H; Kitaoka M; Yamaguchi M; Kumagai H; Katayama T; Yamamoto K
    Appl Environ Microbiol; 2008 Jul; 74(13):3996-4004. PubMed ID: 18469123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of three beta-galactoside phosphorylases from Clostridium phytofermentans: discovery of d-galactosyl-beta1->4-l-rhamnose phosphorylase.
    Nakajima M; Nishimoto M; Kitaoka M
    J Biol Chem; 2009 Jul; 284(29):19220-7. PubMed ID: 19491100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and comparative analysis of four beta-galactosidase genes from Bifidobacterium bifidum NCIMB41171.
    Goulas TK; Goulas AK; Tzortzis G; Gibson GR
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1365-72. PubMed ID: 17684740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered plant phosphorylase showing extraordinarily high affinity for various alpha-glucan molecules.
    Mori H; Tanizawa K; Fukui T
    Protein Sci; 1993 Oct; 2(10):1621-9. PubMed ID: 8251937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and secretion of Bifidobacterium adolescentis amylase by Bifidobacterium longum.
    Rhim SL; Park MS; Ji GE
    Biotechnol Lett; 2006 Feb; 28(3):163-8. PubMed ID: 16489493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates.
    Kiyohara M; Tanigawa K; Chaiwangsri T; Katayama T; Ashida H; Yamamoto K
    Glycobiology; 2011 Apr; 21(4):437-47. PubMed ID: 21036948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.