BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17587732)

  • 1. Ventricular fibrillation: dynamics and ion channel determinants.
    Noujaim SF; Auerbach DS; Jalife J
    Circ J; 2007; 71 Suppl A():A1-11. PubMed ID: 17587732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart.
    Warren M; Guha PK; Berenfeld O; Zaitsev A; Anumonwo JM; Dhamoon AS; Bagwe S; Taffet SM; Jalife J
    J Cardiovasc Electrophysiol; 2003 Jun; 14(6):621-31. PubMed ID: 12875424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms and global dynamics of fibrillation: an integrative approach to the underlying basis of vortex-like reentry.
    Jalife J; Berenfeld O
    J Theor Biol; 2004 Oct; 230(4):475-87. PubMed ID: 15363670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and Molecular Mechanisms of Ventricular Fibrillation in Structurally Normal Hearts.
    Jalife J
    Card Electrophysiol Clin; 2016 Sep; 8(3):601-12. PubMed ID: 27521093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolongation of minimal action potential duration in sustained fibrillation decreases complexity by transient destabilization.
    Bingen BO; Askar SF; Schalij MJ; Kazbanov IV; Ypey DL; Panfilov AV; Pijnappels DA
    Cardiovasc Res; 2013 Jan; 97(1):161-70. PubMed ID: 22977009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inward rectifier potassium channels control rotor frequency in ventricular fibrillation.
    Jalife J
    Heart Rhythm; 2009 Nov; 6(11 Suppl):S44-8. PubMed ID: 19880073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward an understanding of the molecular mechanisms of ventricular fibrillation.
    Jalife J; Anumonwo JM; Berenfeld O
    J Interv Card Electrophysiol; 2003 Oct; 9(2):119-29. PubMed ID: 14574022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanism of transition from ventricular fibrillation to tachycardia : effect of calcium channel blockade on the dynamics of rotating waves.
    Samie FH; Mandapati R; Gray RA; Watanabe Y; Zuur C; Beaumont J; Jalife J
    Circ Res; 2000 Mar; 86(6):684-91. PubMed ID: 10747005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of procainamide-induced prevention of spontaneous wave break during ventricular fibrillation. Insight into the maintenance of fibrillation wave fronts.
    Kim YH; Yashima M; Wu TJ; Doshi R; Chen PS; Karagueuzian HS
    Circulation; 1999 Aug; 100(6):666-74. PubMed ID: 10441106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ionic currents and ventricular fibrillation dynamics].
    Moreno J; Warren M; Jalife J
    Rev Esp Cardiol; 2004 Jan; 57(1):69-79. PubMed ID: 14746720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation.
    Samie FH; Berenfeld O; Anumonwo J; Mironov SF; Udassi S; Beaumont J; Taffet S; Pertsov AM; Jalife J
    Circ Res; 2001 Dec; 89(12):1216-23. PubMed ID: 11739288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of spiral wave reentry by K(+) channel blockade.
    Honjo H; Yamazaki M; Kamiya K; Kodama I
    Circ J; 2007; 71 Suppl A():A26-31. PubMed ID: 17587736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ion channels and arrhythmias].
    Borchard U; Hafner D
    Z Kardiol; 2000; 89 Suppl 3():6-12. PubMed ID: 10810780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac fibrillation: from ion channels to rotors in the human heart.
    Vaquero M; Calvo D; Jalife J
    Heart Rhythm; 2008 Jun; 5(6):872-9. PubMed ID: 18468960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational study of mother rotor VF in the human ventricles.
    Keldermann RH; ten Tusscher KH; Nash MP; Bradley CP; Hren R; Taggart P; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2009 Feb; 296(2):H370-9. PubMed ID: 19060124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms underlying the antifibrillatory action of hyperkalemia in Guinea pig hearts.
    Pandit SV; Warren M; Mironov S; Tolkacheva EG; Kalifa J; Berenfeld O; Jalife J
    Biophys J; 2010 May; 98(10):2091-101. PubMed ID: 20483316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation.
    Pandit SV; Berenfeld O; Anumonwo JM; Zaritski RM; Kneller J; Nattel S; Jalife J
    Biophys J; 2005 Jun; 88(6):3806-21. PubMed ID: 15792974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart.
    Samie FH; Jalife J
    Cardiovasc Res; 2001 May; 50(2):242-50. PubMed ID: 11334828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New approaches for identifying antiarrhythmic drug targets.
    Gilmour RF
    Expert Opin Ther Targets; 2004 Feb; 8(1):1-5. PubMed ID: 14996613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A governing equation for rotor and wavelet number in human clinical ventricular fibrillation: Implications for sudden cardiac death.
    Dharmaprani D; Jenkins EV; Quah JX; Lahiri A; Tiver K; Mitchell L; Bradley CP; Hayward M; Paterson DJ; Taggart P; Clayton RH; Nash MP; Ganesan AN
    Heart Rhythm; 2022 Feb; 19(2):295-305. PubMed ID: 34662707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.