BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17587810)

  • 1. Nuclear localization signals of the E-cadherin transcriptional repressor Snail.
    Ko H; Kim HS; Kim NH; Lee SH; Kim KH; Hong SH; Yook JI
    Cells Tissues Organs; 2007; 185(1-3):66-72. PubMed ID: 17587810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wnt-dependent regulation of the E-cadherin repressor snail.
    Yook JI; Li XY; Ota I; Fearon ER; Weiss SJ
    J Biol Chem; 2005 Mar; 280(12):11740-8. PubMed ID: 15647282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition.
    Zhou BP; Deng J; Xia W; Xu J; Li YM; Gunduz M; Hung MC
    Nat Cell Biol; 2004 Oct; 6(10):931-40. PubMed ID: 15448698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions.
    Yang Z; Rayala S; Nguyen D; Vadlamudi RK; Chen S; Kumar R
    Cancer Res; 2005 Apr; 65(8):3179-84. PubMed ID: 15833848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Snail nuclear import pathways as representatives of C2H2 zinc finger transcription factors.
    Mingot JM; Vega S; Maestro B; Sanz JM; Nieto MA
    J Cell Sci; 2009 May; 122(Pt 9):1452-60. PubMed ID: 19386897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions.
    Doble BW; Woodgett JR
    Cells Tissues Organs; 2007; 185(1-3):73-84. PubMed ID: 17587811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells.
    Rosanò L; Spinella F; Di Castro V; Nicotra MR; Dedhar S; de Herreros AG; Natali PG; Bagnato A
    Cancer Res; 2005 Dec; 65(24):11649-57. PubMed ID: 16357176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P-cadherin induces an epithelial-like phenotype in oral squamous cell carcinoma by GSK-3beta-mediated Snail phosphorylation.
    Bauer K; Dowejko A; Bosserhoff AK; Reichert TE; Bauer RJ
    Carcinogenesis; 2009 Oct; 30(10):1781-8. PubMed ID: 19654099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor.
    Domínguez D; Montserrat-Sentís B; Virgós-Soler A; Guaita S; Grueso J; Porta M; Puig I; Baulida J; Francí C; García de Herreros A
    Mol Cell Biol; 2003 Jul; 23(14):5078-89. PubMed ID: 12832491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma.
    Saito T; Nagai M; Ladanyi M
    Cancer Res; 2006 Jul; 66(14):6919-27. PubMed ID: 16849535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC-/- human colon carcinoma cells.
    Tan C; Costello P; Sanghera J; Dominguez D; Baulida J; de Herreros AG; Dedhar S
    Oncogene; 2001 Jan; 20(1):133-40. PubMed ID: 11244511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc finger domain of Snail functions as a nuclear localization signal for importin beta-mediated nuclear import pathway.
    Yamasaki H; Sekimoto T; Ohkubo T; Douchi T; Nagata Y; Ozawa M; Yoneda Y
    Genes Cells; 2005 May; 10(5):455-64. PubMed ID: 15836774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains.
    Birkenbihl RP; Jach G; Saedler H; Huijser P
    J Mol Biol; 2005 Sep; 352(3):585-96. PubMed ID: 16095614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small C-terminal domain phosphatase enhances snail activity through dephosphorylation.
    Wu Y; Evers BM; Zhou BP
    J Biol Chem; 2009 Jan; 284(1):640-648. PubMed ID: 19004823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail.
    Du C; Zhang C; Hassan S; Biswas MH; Balaji KC
    Cancer Res; 2010 Oct; 70(20):7810-9. PubMed ID: 20940406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional domains of the TGF-beta-inducible transcription factor Tieg3 and detection of two putative nuclear localization signals within the zinc finger DNA-binding domain.
    Spittau B; Wang Z; Boinska D; Krieglstein K
    J Cell Biochem; 2007 Jun; 101(3):712-22. PubMed ID: 17252542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snail transcription factor NLS and importin β1 regulate the subcellular localization of Cathepsin L and Cux1.
    Burton LJ; Henderson V; Liburd L; Odero-Marah VA
    Biochem Biophys Res Commun; 2017 Sep; 491(1):59-64. PubMed ID: 28698143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domain analysis of the Nematostella vectensis SNAIL ortholog reveals unique nucleolar localization that depends on the zinc-finger domains.
    Dattoli AA; Hink MA; DuBuc TQ; Teunisse BJ; Goedhart J; Röttinger E; Postma M
    Sci Rep; 2015 Jul; 5():12147. PubMed ID: 26190255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NLS-dependent nuclear localization of p120ctn is necessary to relieve Kaiso-mediated transcriptional repression.
    Kelly KF; Spring CM; Otchere AA; Daniel JM
    J Cell Sci; 2004 Jun; 117(Pt 13):2675-86. PubMed ID: 15138284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.