These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17588123)

  • 21. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Tmc complex from Desulfovibrio vulgaris hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation.
    Pereira PM; Teixeira M; Xavier AV; Louro RO; Pereira IA
    Biochemistry; 2006 Aug; 45(34):10359-67. PubMed ID: 16922512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics and interaction studies between cytochrome c3 and Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough.
    Brugna M; Giudici-Orticoni MT; Spinelli S; Brown K; Tegoni M; Bruschi M
    Proteins; 1998 Dec; 33(4):590-600. PubMed ID: 9849942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A proteomic view of Desulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry.
    Zhang W; Gritsenko MA; Moore RJ; Culley DE; Nie L; Petritis K; Strittmatter EF; Camp DG; Smith RD; Brockman FJ
    Proteomics; 2006 Aug; 6(15):4286-99. PubMed ID: 16819729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough.
    Keon RG; Fu R; Voordouw G
    Arch Microbiol; 1997 Jun; 167(6):376-83. PubMed ID: 9148780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Desulfovibrio vulgaris Hildenborough HydE and HydG interact with the HydA subunit of the [FeFe] hydrogenase.
    Mansure JJ; Hallenbeck PC
    Biotechnol Lett; 2008 Oct; 30(10):1765-9. PubMed ID: 18563582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway.
    Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC
    J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cytochrome c3-[Fe]-hydrogenase electron-transfer complex: structural model by NMR restrained docking.
    ElAntak L; Morelli X; Bornet O; Hatchikian C; Czjzek M; Dolla A; Guerlesquin F
    FEBS Lett; 2003 Jul; 548(1-3):1-4. PubMed ID: 12885397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions.
    Pereira PM; He Q; Xavier AV; Zhou J; Pereira IA; Louro RO
    Arch Microbiol; 2008 May; 189(5):451-61. PubMed ID: 18060664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogenases in sulfate-reducing bacteria function as chromium reductase.
    Chardin B; Giudici-Orticoni MT; De Luca G; Guigliarelli B; Bruschi M
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):315-21. PubMed ID: 12861426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Periplasmic oxygen reduction by Desulfovibrio species.
    Baumgarten A; Redenius I; Kranczoch J; Cypionka H
    Arch Microbiol; 2001 Oct; 176(4):306-9. PubMed ID: 11685376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems.
    Saalfield SL; Bostick BC
    Environ Sci Technol; 2009 Dec; 43(23):8787-93. PubMed ID: 19943647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of a single periplasmic hydrogenase for both hydrogen uptake and production in some Desulfovibrio species.
    Hatchikian EC; Forget N; Bernadac A; Alazard D; Ollivier B
    Res Microbiol; 1995 Feb; 146(2):129-41. PubMed ID: 7652207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of biocides on gene expression in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
    Lee MH; Caffrey SM; Voordouw JK; Voordouw G
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):1109-18. PubMed ID: 20437234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth.
    Klonowska A; Clark ME; Thieman SB; Giles BJ; Wall JD; Fields MW
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):1007-16. PubMed ID: 18265973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction of a [NiFe]-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough.
    Goenka A; Voordouw JK; Lubitz W; Gärtner W; Voordouw G
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):59-60. PubMed ID: 15667264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deletion of the rbo gene increases the oxygen sensitivity of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
    Voordouw JK; Voordouw G
    Appl Environ Microbiol; 1998 Aug; 64(8):2882-7. PubMed ID: 9687445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth of Desulfovibrio vulgaris when respiring U(VI) and characterization of biogenic uraninite.
    Zhou C; Vannela R; Hyun SP; Hayes KF; Rittmann BE
    Environ Sci Technol; 2014 Jun; 48(12):6928-37. PubMed ID: 24871825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation.
    Ramel F; Amrani A; Pieulle L; Lamrabet O; Voordouw G; Seddiki N; Brèthes D; Company M; Dolla A; Brasseur G
    Microbiology (Reading); 2013 Dec; 159(Pt 12):2663-2673. PubMed ID: 24085836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases.
    Gescher JS; Cordova CD; Spormann AM
    Mol Microbiol; 2008 May; 68(3):706-19. PubMed ID: 18394146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.