These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17588123)

  • 41. Mutualistic growth of the sulfate-reducer Desulfovibrio vulgaris Hildenborough with different carbohydrates.
    Santana MM; Portillo MC; Gonzalez JM
    Mikrobiologiia; 2012; 81(6):720-5. PubMed ID: 23610921
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A sulfate-reducing bacterium that can detoxify U(VI) and obtain energy via nitrate reduction.
    Pietzsch K; Babel W
    J Basic Microbiol; 2003; 43(4):348-61. PubMed ID: 12872316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of the deletion of qmoABC and the promoter-distal gene encoding a hypothetical protein on sulfate reduction in Desulfovibrio vulgaris Hildenborough.
    Zane GM; Yen HC; Wall JD
    Appl Environ Microbiol; 2010 Aug; 76(16):5500-9. PubMed ID: 20581180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis.
    He Q; Huang KH; He Z; Alm EJ; Fields MW; Hazen TC; Arkin AP; Wall JD; Zhou J
    Appl Environ Microbiol; 2006 Jun; 72(6):4370-81. PubMed ID: 16751553
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion.
    Clark ME; He Q; He Z; Huang KH; Alm EJ; Wan XF; Hazen TC; Arkin AP; Wall JD; Zhou JZ; Fields MW
    Appl Environ Microbiol; 2006 Aug; 72(8):5578-88. PubMed ID: 16885312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of permeabilization on sulfate reduction activity of Desulfovibrio vulgaris Hildenborough cells in the presence of different electron donors].
    Xu HW; Zhang X; Li LM; Zheng GJ; Li GH
    Huan Jing Ke Xue; 2013 Jan; 34(1):177-81. PubMed ID: 23487935
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris hildenborough.
    Fournier M; Zhang Y; Wildschut JD; Dolla A; Voordouw JK; Schriemer DC; Voordouw G
    J Bacteriol; 2003 Jan; 185(1):71-9. PubMed ID: 12486042
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F.
    Yahata N; Saitoh T; Takayama Y; Ozawa K; Ogata H; Higuchi Y; Akutsu H
    Biochemistry; 2006 Feb; 45(6):1653-62. PubMed ID: 16460012
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough.
    Ramos AR; Grein F; Oliveira GP; Venceslau SS; Keller KL; Wall JD; Pereira IA
    Environ Microbiol; 2015 Jul; 17(7):2288-305. PubMed ID: 25367508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase.
    De Luca G; de Philip P; Dermoun Z; Rousset M; Verméglio A
    Appl Environ Microbiol; 2001 Oct; 67(10):4583-7. PubMed ID: 11571159
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequential and structural analysis of [NiFe]-hydrogenase-maturation proteins from Desulfovibrio vulgaris Miyazaki F.
    Agrawal AG; Voordouw G; Gärtner W
    Antonie Van Leeuwenhoek; 2006 Oct; 90(3):281-90. PubMed ID: 16902753
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium,
    Zhou A; Lau R; Baran R; Ma J; von Netzer F; Shi W; Gorman-Lewis D; Kempher ML; He Z; Qin Y; Shi Z; Zane GM; Wu L; Bowen BP; Northen TR; Hillesland KL; Stahl DA; Wall JD; Arkin AP; Zhou J
    mBio; 2017 Nov; 8(6):. PubMed ID: 29138306
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
    Heidelberg JF; Seshadri R; Haveman SA; Hemme CL; Paulsen IT; Kolonay JF; Eisen JA; Ward N; Methe B; Brinkac LM; Daugherty SC; Deboy RT; Dodson RJ; Durkin AS; Madupu R; Nelson WC; Sullivan SA; Fouts D; Haft DH; Selengut J; Peterson JD; Davidsen TM; Zafar N; Zhou L; Radune D; Dimitrov G; Hance M; Tran K; Khouri H; Gill J; Utterback TR; Feldblyum TV; Wall JD; Voordouw G; Fraser CM
    Nat Biotechnol; 2004 May; 22(5):554-9. PubMed ID: 15077118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.
    Ramel F; Brasseur G; Pieulle L; Valette O; Hirschler-Réa A; Fardeau ML; Dolla A
    PLoS One; 2015; 10(4):e0123455. PubMed ID: 25837676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacterial Pu(V) reduction in the absence and presence of Fe(III)-NTA: modeling and experimental approach.
    Deo RP; Rittmann BE; Reed DT
    Biodegradation; 2011 Sep; 22(5):921-9. PubMed ID: 21234648
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies.
    Goulhen F; Gloter A; Guyot F; Bruschi M
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):892-7. PubMed ID: 16896506
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c 3.
    Sim MS; Wang DT; Zane GM; Wall JD; Bosak T; Ono S
    Front Microbiol; 2013; 4():171. PubMed ID: 23805134
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overproduction of prismane protein in Desulfovibrio vulgaris (Hildenborough): evidence for a second S = 1/2-spin system in the one-electron reduced state.
    Stokkermans JP; Houba PH; Pierik AJ; Hagen WR; van Dongen WM; Veeger C
    Eur J Biochem; 1992 Dec; 210(3):983-8. PubMed ID: 1336462
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Constraint-based modelling captures the metabolic versatility of Desulfovibrio vulgaris.
    Flowers JJ; Richards MA; Baliga N; Meyer B; Stahl DA
    Environ Microbiol Rep; 2018 Apr; 10(2):190-201. PubMed ID: 29377633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.