These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 17588123)
61. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism. Plugge CM; Scholten JCM; Culley DE; Nie L; Brockman FJ; Zhang W Microbiology (Reading); 2010 Sep; 156(Pt 9):2746-2756. PubMed ID: 20576691 [TBL] [Abstract][Full Text] [Related]
62. Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans. Malki S; De Luca G; Fardeau ML; Rousset M; Belaich JP; Dermoun Z Arch Microbiol; 1997 Jan; 167(1):38-45. PubMed ID: 9000340 [TBL] [Abstract][Full Text] [Related]
63. Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments. Clark ME; Edelmann RE; Duley ML; Wall JD; Fields MW Environ Microbiol; 2007 Nov; 9(11):2844-54. PubMed ID: 17922767 [TBL] [Abstract][Full Text] [Related]
65. Regulation of the Periplasmic [Fe] Hydrogenase by Ferrous Iron in Desulfovibrio vulgaris (Hildenborough). Bryant RD; Van Ommen Kloeke F; Laishley EJ Appl Environ Microbiol; 1993 Feb; 59(2):491-5. PubMed ID: 16348873 [TBL] [Abstract][Full Text] [Related]
66. Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors. Zhang W; Culley DE; Scholten JC; Hogan M; Vitiritti L; Brockman FJ Antonie Van Leeuwenhoek; 2006 Feb; 89(2):221-37. PubMed ID: 16710634 [TBL] [Abstract][Full Text] [Related]
67. The operon for the Fe-hydrogenase in Desulfovibrio vulgaris (Hildenborough): mapping of the transcript and regulation of expression. van den Berg WA; Stokkermans JP; van Dongen WM FEMS Microbiol Lett; 1993 Jun; 110(1):85-90. PubMed ID: 7686524 [TBL] [Abstract][Full Text] [Related]
68. Effects of thiols and mercurials on the periplasmic hydrogenase from Desulfovibrio vulgaris (Hildenborough). Fagan TF; Mayhew SG Biochem J; 1993 Jul; 293 ( Pt 1)(Pt 1):237-41. PubMed ID: 8328964 [TBL] [Abstract][Full Text] [Related]
69. Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris. Franco LC; Steinbeisser S; Zane GM; Wall JD; Fields MW Appl Microbiol Biotechnol; 2018 Mar; 102(6):2839-2850. PubMed ID: 29429007 [TBL] [Abstract][Full Text] [Related]
70. Fe(III)EDTA and Fe(II)EDTA-NO reduction by a sulfate reducing bacterium in NO and SO₂ scrubbing liquor. Chen M; Zhou J; Zhang Y; Wang X; Shi Z; Wang X World J Microbiol Biotechnol; 2015 Mar; 31(3):527-34. PubMed ID: 25649204 [TBL] [Abstract][Full Text] [Related]
71. Quantification of Desulfovibrio vulgaris dissimilatory sulfite reductase gene expression during electron donor- and electron acceptor-limited growth. Villanueva L; Haveman SA; Summers ZM; Lovley DR Appl Environ Microbiol; 2008 Sep; 74(18):5850-3. PubMed ID: 18658285 [TBL] [Abstract][Full Text] [Related]
72. Contribution of rubredoxin:oxygen oxidoreductases and hybrid cluster proteins of Desulfovibrio vulgaris Hildenborough to survival under oxygen and nitrite stress. Yurkiw MA; Voordouw J; Voordouw G Environ Microbiol; 2012 Oct; 14(10):2711-25. PubMed ID: 22947039 [TBL] [Abstract][Full Text] [Related]
73. D-lactate dehydrogenase of Desulfovibrio vulgaris. Ogata M; Arihara K; Yagi T J Biochem; 1981 May; 89(5):1423-31. PubMed ID: 7275946 [TBL] [Abstract][Full Text] [Related]
74. Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris hildenborough by nitrite. Haveman SA; Greene EA; Stilwell CP; Voordouw JK; Voordouw G J Bacteriol; 2004 Dec; 186(23):7944-50. PubMed ID: 15547266 [TBL] [Abstract][Full Text] [Related]
75. Deletion of the Desulfovibrio vulgaris carbon monoxide sensor invokes global changes in transcription. Rajeev L; Hillesland KL; Zane GM; Zhou A; Joachimiak MP; He Z; Zhou J; Arkin AP; Wall JD; Stahl DA J Bacteriol; 2012 Nov; 194(21):5783-93. PubMed ID: 22904289 [TBL] [Abstract][Full Text] [Related]
76. CoIIIEDTA- reduction by Desulfovibrio vulgaris and propagation of reactions involving dissolved sulfide and polysulfides. Blessing TC; Wielinga BW; Morra MJ; Fendorf S Environ Sci Technol; 2001 Apr; 35(8):1599-603. PubMed ID: 11329708 [TBL] [Abstract][Full Text] [Related]
77. Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth. Meyer B; Kuehl J; Deutschbauer AM; Price MN; Arkin AP; Stahl DA J Bacteriol; 2013 Mar; 195(5):990-1004. PubMed ID: 23264581 [TBL] [Abstract][Full Text] [Related]
78. Growth of an anaerobic sulfate-reducing bacterium sustained by oxygen respiratory energy conservation after O Schoeffler M; Gaudin AL; Ramel F; Valette O; Denis Y; Hania WB; Hirschler-Réa A; Dolla A Environ Microbiol; 2019 Jan; 21(1):360-373. PubMed ID: 30394641 [TBL] [Abstract][Full Text] [Related]
79. Coupling methanogenesis with iron reduction by acetotrophic Methanosarcina mazei zm-15. Yang Z; Lu Y Environ Microbiol Rep; 2022 Oct; 14(5):804-811. PubMed ID: 35641250 [TBL] [Abstract][Full Text] [Related]
80. Reduction of NOx in Fe-EDTA and Fe-NTA solutions by an enriched bacterial population. Chandrashekhar B; Pai P; Morone A; Sahu N; Pandey RA Bioresour Technol; 2013 Feb; 130():644-51. PubMed ID: 23334022 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]