These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 17588181)
1. Calculations of the C2 fragmentation energies of higher fullerenes C80 and C82. Dolgonos GA; Peslherbe GH J Mol Model; 2007 Sep; 13(9):981-6. PubMed ID: 17588181 [TBL] [Abstract][Full Text] [Related]
2. Trifluoromethyl derivatives of insoluble small-HOMO-LUMO-gap hollow higher fullerenes. NMR and DFT structure elucidation of C2-(C74-D3h)(CF3)12, Cs-(C76-Td(2))(CF3)12, C2-(C78-D3h(5))(CF3)12, Cs-(C80-C2v(5))(CF3)12, and C2-(C82-C2(5))(CF3)12. Shustova NB; Kuvychko IV; Bolskar RD; Seppelt K; Strauss SH; Popov AA; Boltalina OV J Am Chem Soc; 2006 Dec; 128(49):15793-8. PubMed ID: 17147389 [TBL] [Abstract][Full Text] [Related]
3. The way of stabilizing non-IPR fullerenes and structural elucidation of C(54)Cl(8). Gao X; Zhao Y J Comput Chem; 2007 Mar; 28(4):795-801. PubMed ID: 17226829 [TBL] [Abstract][Full Text] [Related]
4. Violating the isolated pentagon rule (IPR): endohedral non-IPR C98 cages of Gd2@C98. Zhao X; Gao WY; Yang T; Zheng JJ; Li LS; He L; Cao RJ; Nagase S Inorg Chem; 2012 Feb; 51(4):2039-45. PubMed ID: 22288613 [TBL] [Abstract][Full Text] [Related]
5. Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. Wei T; Wang S; Liu F; Tan Y; Zhu X; Xie S; Yang S J Am Chem Soc; 2015 Mar; 137(8):3119-23. PubMed ID: 25659601 [TBL] [Abstract][Full Text] [Related]
6. Comparative investigation of derivatives of C60 and its isomers. Gan LH; Yuan R; Tao CY J Nanosci Nanotechnol; 2007; 7(4-5):1353-6. PubMed ID: 17450898 [TBL] [Abstract][Full Text] [Related]
7. Structure and reactivity of C54q+ (q = 0, 1, 2 and 4) fullerenes. Díaz-Tendero S; Martín F; Alcamí M Phys Chem Chem Phys; 2005 Nov; 7(21):3756-61. PubMed ID: 16358025 [TBL] [Abstract][Full Text] [Related]
8. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers. Zhou Z; Zhao J; Schleyer Pv; Chen Z J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758 [TBL] [Abstract][Full Text] [Related]
9. Isolated pentagon rule violating endohedral metallofullerenes explained using the Hückel rule: a statistical mechanical study of the C84 Isomeric Set. Fuhrer TJ; Lambert AM J Comput Chem; 2015 Jan; 36(3):146-50. PubMed ID: 25367443 [TBL] [Abstract][Full Text] [Related]
10. Stability computations for isomers of La@C(n) (n = 72, 74, 76). Slanina Z; Uhlík F; Lee SL; Adamowicz L; Akasaka T; Nagase S Molecules; 2012 Nov; 17(11):13146-56. PubMed ID: 23128092 [TBL] [Abstract][Full Text] [Related]
11. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: theory and experiment. Xie RH; Bryant GW; Sun G; Nicklaus MC; Heringer D; Frauenheim T; Manaa MR; Smith VH; Araki Y; Ito O J Chem Phys; 2004 Mar; 120(11):5133-47. PubMed ID: 15267383 [TBL] [Abstract][Full Text] [Related]
12. Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. Witek HA; Irle S; Morokuma K J Chem Phys; 2004 Sep; 121(11):5163-70. PubMed ID: 15352808 [TBL] [Abstract][Full Text] [Related]
13. Hybrid ADFT Study of the C Pérez-Figueroa SE; Calaminici P; Köster AM J Phys Chem A; 2019 May; 123(21):4565-4574. PubMed ID: 31021089 [TBL] [Abstract][Full Text] [Related]
14. The stabilization of fused-pentagon fullerene molecules. Tan YZ; Xie SY; Huang RB; Zheng LS Nat Chem; 2009 Sep; 1(6):450-60. PubMed ID: 21378913 [TBL] [Abstract][Full Text] [Related]
15. Small reorganization energies of photoinduced electron transfer between spherical fullerenes. Kawashima Y; Ohkubo K; Fukuzumi S J Phys Chem A; 2013 Aug; 117(31):6737-43. PubMed ID: 23862971 [TBL] [Abstract][Full Text] [Related]
16. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory. Göltl F; Grüneis A; Bučko T; Hafner J J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253 [TBL] [Abstract][Full Text] [Related]
17. C68 fullerene isomers, anions, and their metallofullerenes: charge-stabilizing different isomers. Chen DL; Tian WQ; Feng JK; Sun CC Chemphyschem; 2008 Feb; 9(3):454-61. PubMed ID: 18232051 [TBL] [Abstract][Full Text] [Related]
18. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22. Choi TH; Jordan KD J Phys Chem B; 2010 May; 114(20):6932-6. PubMed ID: 20433189 [TBL] [Abstract][Full Text] [Related]
19. Application of the computationally efficient self-consistent-charge density-functional tight-binding method to magnesium-containing molecules. Cai ZL; Lopez P; Reimers JR; Cui Q; Elstner M J Phys Chem A; 2007 Jul; 111(26):5743-50. PubMed ID: 17555305 [TBL] [Abstract][Full Text] [Related]
20. Chlorination-Promoted Skeletal Transformations of Fullerenes. Yang S; Ioffe IN; Troyanov SI Acc Chem Res; 2019 Jul; 52(7):1783-1792. PubMed ID: 31180640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]