BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 17588257)

  • 1. The effective hard particle model provides a simple, robust, and broadly applicable description of nonideal behavior in concentrated solutions of bovine serum albumin and other nonassociating proteins.
    Minton AP
    J Pharm Sci; 2007 Dec; 96(12):3466-9. PubMed ID: 17588257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of collective diffusion coefficient of bovine serum albumin in aqueous electrolyte solution with hard-core two-Yukawa potential.
    Yu YX; Tian AW; Gao GH
    Phys Chem Chem Phys; 2005 Jun; 7(12):2423-8. PubMed ID: 15962025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular model for the dependence of the osmotic pressure of bovine serum albumin upon concentration and pH.
    Minton AP
    Biophys Chem; 1995 Dec; 57(1):65-70. PubMed ID: 8534837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the molecular sources of nonideal osmotic pressure of bovine serum albumin solutions as a function of pH.
    Kanal KM; Fullerton GD; Cameron IL
    Biophys J; 1994 Jan; 66(1):153-60. PubMed ID: 8130335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the stability of O/W emulsion in BSA solution: stabilization by electrically neutral protein at high ionic strength.
    Rangsansarid J; Fukada K
    J Colloid Interface Sci; 2007 Dec; 316(2):779-86. PubMed ID: 17897667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective hard particle model for the osmotic pressure of highly concentrated binary protein solutions.
    Minton AP
    Biophys J; 2008 Apr; 94(7):L57-9. PubMed ID: 18212007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotically unresponsive water fraction on proteins: non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration.
    Fullerton GD; Kanal KM; Cameron IL
    Cell Biol Int; 2006 Jan; 30(1):86-92. PubMed ID: 16376113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of osmotic pressure data for aqueous protein solutions via a multicomponent model.
    Druchok M; Kalyuzhnyi Y; Rescic J; Vlachy V
    J Chem Phys; 2006 Mar; 124(11):114902. PubMed ID: 16555916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular-thermodynamic model for the interactions between globular proteins in aqueous solutions: applications to bovine serum albumin (BSA), lysozyme, alpha-chymotrypsin, and immuno-gamma-globulins (IgG) solutions.
    Jin L; Yu YX; Gao GH
    J Colloid Interface Sci; 2006 Dec; 304(1):77-83. PubMed ID: 16987523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring zeta potential of protein nano-particles using electroacoustics.
    Dukhin AS; Parlia S
    Colloids Surf B Biointerfaces; 2014 Sep; 121():257-63. PubMed ID: 25001190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-protein interactions in ovalbumin solutions studied by small-angle scattering: effect of ionic strength and the chemical nature of cations.
    Ianeselli L; Zhang F; Skoda MW; Jacobs RM; Martin RA; Callow S; Prévost S; Schreiber F
    J Phys Chem B; 2010 Mar; 114(11):3776-83. PubMed ID: 20192264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static light scattering from concentrated protein solutions II: experimental test of theory for protein mixtures and weakly self-associating proteins.
    Fernández C; Minton AP
    Biophys J; 2009 Mar; 96(5):1992-8. PubMed ID: 19254559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the NaCl or CaCl2 concentration on the structure of heat-set bovine serum albumin gels at pH 7.
    Donato L; Garnier C; Doublier JL; Nicolai T
    Biomacromolecules; 2005; 6(4):2157-63. PubMed ID: 16004458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of solution properties on solute and permeate flux in bovine serum albumin-IgG ultrafiltration.
    Nel RG; Oppenheim SF; Rodgers VG
    Biotechnol Prog; 1994; 10(5):539-42. PubMed ID: 7765379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrogating the Osmotic Pressure of Self-Crowded Bovine Serum Albumin Solutions: Implications of Specific Monovalent Anion Effects Relative to the Hofmeister Series.
    Hale CS; Ornelas DN; Yang JS; Chang L; Vang K; Batarseh RN; Ozaki N; Rodgers VGJ
    J Phys Chem B; 2018 Aug; 122(33):8037-8046. PubMed ID: 30074781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entering and exiting the protein-polyelectrolyte coacervate phase via nonmonotonic salt dependence of critical conditions.
    Antonov M; Mazzawi M; Dubin PL
    Biomacromolecules; 2010 Jan; 11(1):51-9. PubMed ID: 19947624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of bovine serum albumin.
    Shamim N; Hong L; Hidajat K; Uddin MS
    J Colloid Interface Sci; 2006 Dec; 304(1):1-8. PubMed ID: 17010360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering.
    Ma Y; Acosta DM; Whitney JR; Podgornik R; Steinmetz NF; French RH; Parsegian VA
    J Biol Phys; 2015 Jan; 41(1):85-97. PubMed ID: 25403822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements and theoretical interpretation of points of zero charge/potential of BSA protein.
    Salis A; Boström M; Medda L; Cugia F; Barse B; Parsons DF; Ninham BW; Monduzzi M
    Langmuir; 2011 Sep; 27(18):11597-604. PubMed ID: 21834579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of polyelectrolyte chain stiffness, charge mobility, and charge sequences on binding to proteins and micelles.
    Cooper CL; Goulding A; Kayitmazer AB; Ulrich S; Stoll S; Turksen S; Yusa S; Kumar A; Dubin PL
    Biomacromolecules; 2006 Apr; 7(4):1025-35. PubMed ID: 16602717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.