BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17588632)

  • 1. Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction.
    Hirosue S; Senn K; Clément N; Nonnenmacher M; Gigout L; Linden RM; Weber T
    Virology; 2007 Oct; 367(1):10-8. PubMed ID: 17588632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of dynein inhibition on the autophagic pathway in glioma cells.
    Yamamoto M; Suzuki SO; Himeno M
    Neuropathology; 2010 Feb; 30(1):1-6. PubMed ID: 19496938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Is the microtubule disruption-induced alteration of peroxide concentration a factor inhibiting the assembly of ribonucleoprotein stress granules?].
    Chudinova EM; Nadezhdina ES; Ivanov PA
    Biofizika; 2010; 55(5):857-61. PubMed ID: 21033352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of drugs affecting microtubular assembly on microtubules, phospholipid synthesis and physiological indices (signalling, growth, motility and phagocytosis) in Tetrahymena pyriformis.
    Kovács P; Csaba G
    Cell Biochem Funct; 2006; 24(5):419-29. PubMed ID: 15912561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of aberrant perinuclear microtubule aster organization by microtubule-destabilizing agents.
    Sakaushi S; Senda-Murata K; Oka S; Sugimoto K
    Biosci Biotechnol Biochem; 2009 May; 73(5):1192-6. PubMed ID: 19420700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells.
    Rickard JE; Kreis TE
    J Cell Biol; 1990 May; 110(5):1623-33. PubMed ID: 1970824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A common mechanism for cytoplasmic dynein-dependent microtubule binding shared among adeno-associated virus and adenovirus serotypes.
    Kelkar S; De BP; Gao G; Wilson JM; Crystal RG; Leopold PL
    J Virol; 2006 Aug; 80(15):7781-5. PubMed ID: 16840360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus.
    Suomalainen M; Nakano MY; Keller S; Boucke K; Stidwill RP; Greber UF
    J Cell Biol; 1999 Feb; 144(4):657-72. PubMed ID: 10037788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction.
    Xiao PJ; Mitchell AM; Huang L; Li C; Samulski RJ
    Hum Gene Ther; 2016 Apr; 27(4):309-24. PubMed ID: 26942476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule aster formation by dynein-dependent organelle transport.
    Nilsson H; Wallin M
    Cell Motil Cytoskeleton; 1998; 41(3):254-63. PubMed ID: 9829779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubules and Dynein Regulate Human Neutrophil Nuclear Volume and Hypersegmentation During
    Silva-Del Toro SL; Allen LH
    Front Immunol; 2021; 12():653100. PubMed ID: 33828562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular studies reveal mechanistic differences between taccalonolide A and paclitaxel.
    Risinger AL; Mooberry SL
    Cell Cycle; 2011 Jul; 10(13):2162-71. PubMed ID: 21597323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network.
    Xiao PJ; Samulski RJ
    J Virol; 2012 Oct; 86(19):10462-73. PubMed ID: 22811523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of microtubule disruption on cell adhesion and spreading.
    Kadi A; Pichard V; Lehmann M; Briand C; Braguer D; Marvaldi J; Rognoni JB; Luis J
    Biochem Biophys Res Commun; 1998 May; 246(3):690-5. PubMed ID: 9618274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells.
    Brito DA; Rieder CL
    Cell Motil Cytoskeleton; 2009 Aug; 66(8):437-47. PubMed ID: 18792104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nocodazole, vinblastine and taxol at low concentrations affect fibroblast locomotion and saltatory movements of organelles.
    Grigoriev IS; Chernobelskaya AA; Vorobjev IA
    Membr Cell Biol; 1999; 13(1):23-48. PubMed ID: 10661468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule-active drugs taxol, vinblastine, and nocodazole increase the levels of transcriptionally active p53.
    Tishler RB; Lamppu DM; Park S; Price BD
    Cancer Res; 1995 Dec; 55(24):6021-5. PubMed ID: 8521385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule depolymerization and tau phosphorylation.
    Hernández F; García-García E; Avila J
    J Alzheimers Dis; 2013; 37(3):507-13. PubMed ID: 23948896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of microtubule modulators on HIV-1 infection of transformed and resting CD4 T cells.
    Yoder A; Guo J; Yu D; Cui Z; Zhang XE; Wu Y
    J Virol; 2011 Mar; 85(6):3020-4. PubMed ID: 21209111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.