These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 1758881)
41. Structure of the Q67H mutant of R67 dihydrofolate reductase-NADP+ complex reveals a novel cofactor binding mode. Divya N; Grifith E; Narayana N Protein Sci; 2007 Jun; 16(6):1063-8. PubMed ID: 17473013 [TBL] [Abstract][Full Text] [Related]
42. Selective probing of a NADPH site controlled light-induced enzymatic catalysis. Lambry JC; Beaumont E; Tarus B; Blanchard-Desce M; Slama-Schwok A J Mol Recognit; 2010; 23(4):379-88. PubMed ID: 20029835 [TBL] [Abstract][Full Text] [Related]
43. Investigation of osmolyte effects on FolM: comparison with other dihydrofolate reductases. Bhojane PP; Duff MR; Patel HC; Vogt ME; Howell EE Biochemistry; 2014 Mar; 53(8):1330-41. PubMed ID: 24517487 [TBL] [Abstract][Full Text] [Related]
44. Dihydrofolate reductase from Escherichia coli: the kinetic mechanism with NADPH and reduced acetylpyridine adenine dinucleotide phosphate as substrates. Stone SR; Morrison JF Biochemistry; 1988 Jul; 27(15):5493-9. PubMed ID: 3052577 [TBL] [Abstract][Full Text] [Related]
45. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway. Oyen D; Fenwick RB; Stanfield RL; Dyson HJ; Wright PE J Am Chem Soc; 2015 Jul; 137(29):9459-68. PubMed ID: 26147643 [TBL] [Abstract][Full Text] [Related]
46. One site fits both: a model for the ternary complex of folate + NADPH in R67 dihydrofolate reductase, a D2 symmetric enzyme. Howell EE; Shukla U; Hicks SN; Smiley RD; Kuhn LA; Zavodszky MI J Comput Aided Mol Des; 2001 Nov; 15(11):1035-52. PubMed ID: 11989624 [TBL] [Abstract][Full Text] [Related]
47. Effect of ligand binding on the intraminimum dynamics of proteins. Alakent B; Baskan S; Doruker P J Comput Chem; 2011 Feb; 32(3):483-96. PubMed ID: 20730777 [TBL] [Abstract][Full Text] [Related]
48. Theoretical studies on the dihydrofolate reductase mechanism: electronic polarization of bound substrates. Bajorath J; Kraut J; Li ZQ; Kitson DH; Hagler AT Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6423-6. PubMed ID: 1862073 [TBL] [Abstract][Full Text] [Related]
49. Conformation of NADP+ bound to a type II dihydrofolate reductase. Brito RM; Rudolph FB; Rosevear PR Biochemistry; 1991 Feb; 30(6):1461-9. PubMed ID: 1993165 [TBL] [Abstract][Full Text] [Related]
50. A study of the binding of NADP coenzymes to dihydrofolate reductase by raman difference spectroscopy. Zheng J; Chen YQ; Callender R Eur J Biochem; 1993 Jul; 215(1):9-16. PubMed ID: 8344289 [TBL] [Abstract][Full Text] [Related]
51. Hydrophobic interactions via mutants of Escherichia coli dihydrofolate reductase: separation of binding and catalysis. Murphy DJ; Benkovic SJ Biochemistry; 1989 Apr; 28(7):3025-31. PubMed ID: 2663066 [TBL] [Abstract][Full Text] [Related]
52. Role of Lys-32 residues in R67 dihydrofolate reductase probed by asymmetric mutations. Hicks SN; Smiley RD; Stinnett LG; Minor KH; Howell EE J Biol Chem; 2004 Nov; 279(45):46995-7002. PubMed ID: 15333636 [TBL] [Abstract][Full Text] [Related]
53. High-pressure protein crystal structure analysis of Escherichia coli dihydrofolate reductase complexed with folate and NADP Nagae T; Yamada H; Watanabe N Acta Crystallogr D Struct Biol; 2018 Sep; 74(Pt 9):895-905. PubMed ID: 30198899 [TBL] [Abstract][Full Text] [Related]
54. Dihydrofolate reductase from Escherichia coli: probing the role of aspartate-27 and phenylalanine-137 in enzyme conformation and the binding of NADPH. Dunn SM; Lanigan TM; Howell EE Biochemistry; 1990 Sep; 29(37):8569-76. PubMed ID: 2271540 [TBL] [Abstract][Full Text] [Related]
55. Identification of endogenous ligands bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR. Bhabha G; Tuttle L; Martinez-Yamout MA; Wright PE FEBS Lett; 2011 Nov; 585(22):3528-32. PubMed ID: 22024482 [TBL] [Abstract][Full Text] [Related]
56. Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase. Garcia-Viloca M; Truhlar DG; Gao J J Mol Biol; 2003 Mar; 327(2):549-60. PubMed ID: 12628257 [TBL] [Abstract][Full Text] [Related]
57. The structure and competitive substrate inhibition of dihydrofolate reductase from Enterococcus faecalis reveal restrictions to cofactor docking. Bourne CR; Wakeham N; Webb N; Nammalwar B; Bunce RA; Berlin KD; Barrow WW Biochemistry; 2014 Feb; 53(7):1228-38. PubMed ID: 24495113 [TBL] [Abstract][Full Text] [Related]
58. High throughput screening identifies novel inhibitors of Escherichia coli dihydrofolate reductase that are competitive with dihydrofolate. Zolli-Juran M; Cechetto JD; Hartlen R; Daigle DM; Brown ED Bioorg Med Chem Lett; 2003 Aug; 13(15):2493-6. PubMed ID: 12852950 [TBL] [Abstract][Full Text] [Related]
59. Studies on the Interaction between Poly-Phosphane Gold(I) Complexes and Dihydrofolate Reductase: An Interplay with Nicotinamide Adenine Dinucleotide Cofactor. Pucciarelli S; Vincenzetti S; Ricciutelli M; Simon OC; Ramadori AT; Luciani L; Galassi R Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30979096 [TBL] [Abstract][Full Text] [Related]
60. Role of aspartate 27 of dihydrofolate reductase from Escherichia coli in interconversion of active and inactive enzyme conformers and binding of NADPH. Appleman JR; Howell EE; Kraut J; Blakley RL J Biol Chem; 1990 Apr; 265(10):5579-84. PubMed ID: 2108144 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]