These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 17588872)

  • 1. Applying elastic fibre biology in vascular tissue engineering.
    Kielty CM; Stephan S; Sherratt MJ; Williamson M; Shuttleworth CA
    Philos Trans R Soc Lond B Biol Sci; 2007 Aug; 362(1484):1293-312. PubMed ID: 17588872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-matrix biology in vascular tissue engineering.
    Stephan S; Ball SG; Williamson M; Bax DV; Lomas A; Shuttleworth CA; Kielty CM
    J Anat; 2006 Oct; 209(4):495-502. PubMed ID: 17005021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly.
    Bashur CA; Venkataraman L; Ramamurthi A
    Tissue Eng Part B Rev; 2012 Jun; 18(3):203-17. PubMed ID: 22224468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic fibres and vascular structure in hypertension.
    Arribas SM; Hinek A; González MC
    Pharmacol Ther; 2006 Sep; 111(3):771-91. PubMed ID: 16488477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental validation of a new approach for the development of mechano-compatible composite scaffolds for vascular tissue engineering.
    Couet F; Mantovani D
    J Mater Sci Mater Med; 2008 Jul; 19(7):2551-4. PubMed ID: 17914629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A step closer to elastogenesis on demand; Inducing mature elastic fibre deposition in a natural biomaterial scaffold.
    Almeida-González FR; González-Vázquez A; Mithieux SM; O'Brien FJ; Weiss AS; Brougham CM
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111788. PubMed ID: 33545914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft.
    Qiu X; Lee BL; Ning X; Murthy N; Dong N; Li S
    Acta Biomater; 2017 Mar; 51():138-147. PubMed ID: 28069505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review.
    Obiweluozor FO; Emechebe GA; Kim DW; Cho HJ; Park CH; Kim CS; Jeong IS
    Cardiovasc Eng Technol; 2020 Oct; 11(5):495-521. PubMed ID: 32812139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic fibres in health and disease.
    Baldwin AK; Simpson A; Steer R; Cain SA; Kielty CM
    Expert Rev Mol Med; 2013 Aug; 15():e8. PubMed ID: 23962539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineered bovine saphenous vein extracellular matrix scaffolds produced via antigen removal achieve high in vivo patency rates.
    Lopera Higuita M; Lopera Giraldo JF; Sarrafian TL; Griffiths LG
    Acta Biomater; 2021 Oct; 134():144-159. PubMed ID: 34192567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of endothelium-denuded human umbilical veins as living scaffolds for tissue-engineered small-calibre vascular grafts.
    Hoenicka M; Schrammel S; Bursa J; Huber G; Bronger H; Schmid C; Birnbaum DE
    J Tissue Eng Regen Med; 2013 Apr; 7(4):324-36. PubMed ID: 22689499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold.
    Tschoeke B; Flanagan TC; Koch S; Harwoko MS; Deichmann T; Ellå V; Sachweh JS; Kellomåki M; Gries T; Schmitz-Rode T; Jockenhoevel S
    Tissue Eng Part A; 2009 Aug; 15(8):1909-18. PubMed ID: 19125650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterials for vascular tissue engineering.
    Ravi S; Chaikof EL
    Regen Med; 2010 Jan; 5(1):107-20. PubMed ID: 20017698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering.
    Srinath D; Lin S; Knight DK; Rizkalla AS; Mequanint K
    J Tissue Eng Regen Med; 2014 Jul; 8(7):578-88. PubMed ID: 22899439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoarchitecture of scaffolds and endothelial cells in engineering small diameter vascular grafts.
    Sankaran KK; Subramanian A; Krishnan UM; Sethuraman S
    Biotechnol J; 2015 Jan; 10(1):96-108. PubMed ID: 25641941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review.
    Sarkar S; Schmitz-Rixen T; Hamilton G; Seifalian AM
    Med Biol Eng Comput; 2007 Apr; 45(4):327-36. PubMed ID: 17340153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering.
    Dimopoulos A; Markatos DN; Mitropoulou A; Panagiotopoulos I; Koletsis E; Mavrilas D
    J Mater Sci Mater Med; 2021 Mar; 32(2):21. PubMed ID: 33649939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allogeneic human tissue-engineered blood vessel.
    Quint C; Arief M; Muto A; Dardik A; Niklason LE
    J Vasc Surg; 2012 Mar; 55(3):790-8. PubMed ID: 22056286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transluminal compression increases mechanical stability, stiffness and endothelialization capacity of fibrin-based bioartificial blood vessels.
    Helms F; Haverich A; Böer U; Wilhelmi M
    J Mech Behav Biomed Mater; 2021 Dec; 124():104835. PubMed ID: 34530301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.