BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 17588896)

  • 21. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows.
    Barnes DKA
    Glob Chang Biol; 2017 Dec; 23(12):5083-5091. PubMed ID: 28643454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dependency of Antarctic zooplankton species on ice algae-produced carbon suggests a sea ice-driven pelagic ecosystem during winter.
    Kohlbach D; Graeve M; Lange BA; David C; Schaafsma FL; van Franeker JA; Vortkamp M; Brandt A; Flores H
    Glob Chang Biol; 2018 Oct; 24(10):4667-4681. PubMed ID: 29999582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall.
    Merico A; Tyrrell T; Wilson PA
    Nature; 2008 Apr; 452(7190):979-82. PubMed ID: 18432242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton.
    Martinez E; Antoine D; D'Ortenzio F; Gentili B
    Science; 2009 Nov; 326(5957):1253-6. PubMed ID: 19965473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trophic interactions within the Ross Sea continental shelf ecosystem.
    Smith WO; Ainley DG; Cattaneo-Vietti R
    Philos Trans R Soc Lond B Biol Sci; 2007 Jan; 362(1477):95-111. PubMed ID: 17405209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adult antarctic krill feeding at abyssal depths.
    Clarke A; Tyler PA
    Curr Biol; 2008 Feb; 18(4):282-5. PubMed ID: 18302926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Massive phytoplankton blooms under Arctic sea ice.
    Arrigo KR; Perovich DK; Pickart RS; Brown ZW; van Dijken GL; Lowry KE; Mills MM; Palmer MA; Balch WM; Bahr F; Bates NR; Benitez-Nelson C; Bowler B; Brownlee E; Ehn JK; Frey KE; Garley R; Laney SR; Lubelczyk L; Mathis J; Matsuoka A; Mitchell BG; Moore GW; Ortega-Retuerta E; Pal S; Polashenski CM; Reynolds RA; Schieber B; Sosik HM; Stephens M; Swift JH
    Science; 2012 Jun; 336(6087):1408. PubMed ID: 22678359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased productivity in the subantarctic ocean during Heinrich events.
    Sachs JP; Anderson RF
    Nature; 2005 Apr; 434(7037):1118-21. PubMed ID: 15858571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Southern Ocean biological response to aeolian iron deposition.
    Cassar N; Bender ML; Barnett BA; Fan S; Moxim WJ; Levy H; Tilbrook B
    Science; 2007 Aug; 317(5841):1067-70. PubMed ID: 17717181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wind-driven upwelling of iron sustains dense blooms and food webs in the eastern Weddell Gyre.
    Moreau S; Hattermann T; de Steur L; Kauko HM; Ahonen H; Ardelan M; Assmy P; Chierici M; Descamps S; Dinter T; Falkenhaug T; Fransson A; Grønningsæter E; Hallfredsson EH; Huhn O; Lebrun A; Lowther A; Lübcker N; Monteiro P; Peeken I; Roychoudhury A; Różańska M; Ryan-Keogh T; Sanchez N; Singh A; Simonsen JH; Steiger N; Thomalla SJ; van Tonder A; Wiktor JM; Steen H
    Nat Commun; 2023 Mar; 14(1):1303. PubMed ID: 36894593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trace element analysis in the serum and hair of Antarctic leopard seal, Hydrurga leptonyx, and Weddell seal, Leptonychotes weddellii.
    Gray R; Canfield P; Rogers T
    Sci Total Environ; 2008 Jul; 399(1-3):202-15. PubMed ID: 18486190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oceans. Picoplankton do some heavy lifting.
    Barber RT
    Science; 2007 Feb; 315(5813):777-8. PubMed ID: 17289968
    [No Abstract]   [Full Text] [Related]  

  • 33. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms.
    McGillicuddy DJ; Anderson LA; Bates NR; Bibby T; Buesseler KO; Carlson CA; Davis CS; Ewart C; Falkowski PG; Goldthwait SA; Hansell DA; Jenkins WJ; Johnson R; Kosnyrev VK; Ledwell JR; Li QP; Siegel DA; Steinberg DK
    Science; 2007 May; 316(5827):1021-6. PubMed ID: 17510363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific.
    Ware DM; Thomson RE
    Science; 2005 May; 308(5726):1280-4. PubMed ID: 15845876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antarctic ecosystem: are deep krill ecological outliers or portents of a paradigm shift?
    Brierley AS
    Curr Biol; 2008 Mar; 18(6):R252-4. PubMed ID: 18364229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks.
    Barnes DKA; Fleming A; Sands CJ; Quartino ML; Deregibus D
    Philos Trans A Math Phys Eng Sci; 2018 Jun; 376(2122):. PubMed ID: 29760118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in sea-ice microbiology.
    Mock T; Thomas DN
    Environ Microbiol; 2005 May; 7(5):605-19. PubMed ID: 15819843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach.
    McNabb RW; Womble JN; Prakash A; Gens R; Haselwimmer CE
    PLoS One; 2016; 11(11):e0164444. PubMed ID: 27828967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diminishing sea ice.
    Ray GC; Hufford GL; Krupnik II; Overland JE
    Science; 2008 Sep; 321(5895):1443-5; author reply 1443-5. PubMed ID: 18787150
    [No Abstract]   [Full Text] [Related]  

  • 40. Climate change enhances primary production in the western Antarctic Peninsula.
    Moreau S; Mostajir B; Bélanger S; Schloss IR; Vancoppenolle M; Demers S; Ferreyra GA
    Glob Chang Biol; 2015 Jun; 21(6):2191-205. PubMed ID: 25626857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.