These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 17589508)

  • 1. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity.
    Cartolano M; Castillo R; Efremova N; Kuckenberg M; Zethof J; Gerats T; Schwarz-Sommer Z; Vandenbussche M
    Nat Genet; 2007 Jul; 39(7):901-5. PubMed ID: 17589508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgene-triggered, epigenetically regulated ectopic expression of a flower homeotic gene pMADS3 in Petunia.
    Kapoor M; Baba A; Kubo K; Shibuya K; Matsui K; Tanaka Y; Takatsuji H
    Plant J; 2005 Sep; 43(5):649-61. PubMed ID: 16115063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.
    Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T
    Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner.
    Himeno M; Neriya Y; Minato N; Miura C; Sugawara K; Ishii Y; Yamaji Y; Kakizawa S; Oshima K; Namba S
    Plant J; 2011 Sep; 67(6):971-9. PubMed ID: 21605209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of Aintegumenta as a gene to modify floral size in ornamental plants.
    Manchado-Rojo M; Weiss J; Egea-Cortines M
    Plant Biotechnol J; 2014 Oct; 12(8):1053-65. PubMed ID: 24985495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ROSINA (RSI), a novel protein with DNA-binding capacity, acts during floral organ development in Antirrhinum majus.
    Roccaro M; Li Y; Masiero S; Saedler H; Sommer H
    Plant J; 2005 Jul; 43(2):238-50. PubMed ID: 15998310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sculpting the flower; the role of microRNAs in flower development.
    Nag A; Jack T
    Curr Top Dev Biol; 2010; 91():349-78. PubMed ID: 20705188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flower development in pisum sativum: from the war of the whorls to the battle of the common primordia.
    Ferrandiz C; Navarro C; Gomez MD; Canas LA; Beltran JP
    Dev Genet; 1999 Sep; 25(3):280-90. PubMed ID: 10528268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analyses of genetic pathways controlling petal specification in poppy.
    Drea S; Hileman LC; de Martino G; Irish VF
    Development; 2007 Dec; 134(23):4157-66. PubMed ID: 17959716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics of Floral Development (By Christine Fleet).
    Plant Cell; 2017 Nov; 29(11):. PubMed ID: 29222401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary conservation of microRNA regulatory programs in plant flower development.
    Luo Y; Guo Z; Li L
    Dev Biol; 2013 Aug; 380(2):133-44. PubMed ID: 23707900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of cell and petal morphogenesis by R2R3 MYB transcription factors.
    Baumann K; Perez-Rodriguez M; Bradley D; Venail J; Bailey P; Jin H; Koes R; Roberts K; Martin C
    Development; 2007 May; 134(9):1691-701. PubMed ID: 17376813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning.
    Rijpkema AS; Zethof J; Gerats T; Vandenbussche M
    Plant J; 2009 Oct; 60(1):1-9. PubMed ID: 19453449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversification and co-option of RAD-like genes in the evolution of floral asymmetry.
    Baxter CE; Costa MM; Coen ES
    Plant J; 2007 Oct; 52(1):105-13. PubMed ID: 17672842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation.
    Kalivas A; Pasentsis K; Polidoros AN; Tsaftaris AS
    DNA Seq; 2007 Apr; 18(2):120-30. PubMed ID: 17364823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flower symmetry and shape in Antirrhinum.
    Almeida J; Galego L
    Int J Dev Biol; 2005; 49(5-6):527-37. PubMed ID: 16096962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice open beak is a negative regulator of class 1 knox genes and a positive regulator of class B floral homeotic gene.
    Horigome A; Nagasawa N; Ikeda K; Ito M; Itoh J; Nagato Y
    Plant J; 2009 Jun; 58(5):724-36. PubMed ID: 19207212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Duplications and expression of DIVARICATA-like genes in dipsacales.
    Howarth DG; Donoghue MJ
    Mol Biol Evol; 2009 Jun; 26(6):1245-58. PubMed ID: 19289599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida.
    Morita Y; Saito R; Ban Y; Tanikawa N; Kuchitsu K; Ando T; Yoshikawa M; Habu Y; Ozeki Y; Nakayama M
    Plant J; 2012 Jun; 70(5):739-49. PubMed ID: 22288551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergence of the Floral A-Function between an Asterid and a Rosid Species.
    Morel P; Heijmans K; Rozier F; Zethof J; Chamot S; Bento SR; Vialette-Guiraud A; Chambrier P; Trehin C; Vandenbussche M
    Plant Cell; 2017 Jul; 29(7):1605-1621. PubMed ID: 28646074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.