These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 17589518)

  • 1. Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation.
    Ettwiller L; Paten B; Ramialison M; Birney E; Wittbrodt J
    Nat Methods; 2007 Jul; 4(7):563-5. PubMed ID: 17589518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets.
    Dang LT; Tondl M; Chiu MHH; Revote J; Paten B; Tano V; Tokolyi A; Besse F; Quaife-Ryan G; Cumming H; Drvodelic MJ; Eichenlaub MP; Hallab JC; Stolper JS; Rossello FJ; Bogoyevitch MA; Jans DA; Nim HT; Porrello ER; Hudson JE; Ramialison M
    BMC Genomics; 2018 Apr; 19(1):238. PubMed ID: 29621972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes.
    Pavesi G; Mereghetti P; Zambelli F; Stefani M; Mauri G; Pesole G
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W566-70. PubMed ID: 16845071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing multiple data sets by interconnecting RSAT programs via SOAP Web services: an example with ChIP-chip data.
    Sand O; Thomas-Chollier M; Vervisch E; van Helden J
    Nat Protoc; 2008; 3(10):1604-15. PubMed ID: 18802441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPACER: identification of cis-regulatory elements with non-contiguous critical residues.
    Chakravarty A; Carlson JM; Khetani RS; DeZiel CE; Gross RH
    Bioinformatics; 2007 Apr; 23(8):1029-31. PubMed ID: 17470480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. POXO: a web-enabled tool series to discover transcription factor binding sites.
    Kankainen M; Pehkonen P; Rosenstöm P; Törönen P; Wong G; Holm L
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W534-40. PubMed ID: 16845065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using RSAT oligo-analysis and dyad-analysis tools to discover regulatory signals in nucleic sequences.
    Defrance M; Janky R; Sand O; van Helden J
    Nat Protoc; 2008; 3(10):1589-603. PubMed ID: 18802440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hypothesis-based approach for identifying the binding specificity of regulatory proteins from chromatin immunoprecipitation data.
    Macisaac KD; Gordon DB; Nekludova L; Odom DT; Schreiber J; Gifford DK; Young RA; Fraenkel E
    Bioinformatics; 2006 Feb; 22(4):423-9. PubMed ID: 16332710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Trawler_standalone to discover overrepresented motifs in DNA and RNA sequences derived from various experiments including chromatin immunoprecipitation.
    Haudry Y; Ramialison M; Paten B; Wittbrodt J; Ettwiller L
    Nat Protoc; 2010 Feb; 5(2):323-34. PubMed ID: 20134431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic peak calling and controlling false discovery rate estimations in transcription factor binding site mapping from ChIP-seq.
    Jiao S; Bailey CP; Zhang S; Ladunga I
    Methods Mol Biol; 2010; 674():161-77. PubMed ID: 20827591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering motifs in ranked lists of DNA sequences.
    Eden E; Lipson D; Yogev S; Yakhini Z
    PLoS Comput Biol; 2007 Mar; 3(3):e39. PubMed ID: 17381235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AIMIE: a web-based environment for detection and interpretation of significant sequence motifs in prokaryotic genomes.
    Mrázek J; Xie S; Guo X; Srivastava A
    Bioinformatics; 2008 Apr; 24(8):1041-8. PubMed ID: 18304933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DILIMOT: discovery of linear motifs in proteins.
    Neduva V; Russell RB
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W350-5. PubMed ID: 16845024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing.
    Hoffman BG; Jones SJ
    J Endocrinol; 2009 Apr; 201(1):1-13. PubMed ID: 19136617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HeliCis: a DNA motif discovery tool for colocalized motif pairs with periodic spacing.
    Larsson E; Lindahl P; Mostad P
    BMC Bioinformatics; 2007 Oct; 8():418. PubMed ID: 17963524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational approaches to finding and analyzing cis-regulatory elements.
    Brown CT
    Methods Cell Biol; 2008; 87():337-65. PubMed ID: 18485306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering sequence motifs.
    Bailey TL
    Methods Mol Biol; 2008; 452():231-51. PubMed ID: 18566768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of software facilities to characterize regulatory binding motifs and application to streptococcaceae.
    Pons N; Batto JM; Ehrlich SD; Renault P
    J Mol Microbiol Biotechnol; 2008; 14(1-3):67-73. PubMed ID: 17957112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using ChIPMotifs for de novo motif discovery of OCT4 and ZNF263 based on ChIP-based high-throughput experiments.
    Kennedy BA; Lan X; Huang TH; Farnham PJ; Jin VX
    Methods Mol Biol; 2012; 802():323-34. PubMed ID: 22130890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating regulatory factors and their DNA binding affinities through real time quantitative PCR (RT-QPCR) and chromatin immunoprecipitation (ChIP) assays.
    Taneyhill LA; Adams MS
    Methods Cell Biol; 2008; 87():367-89. PubMed ID: 18485307
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.