BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17589597)

  • 1. PBTK modeling demonstrates contribution of dermal and inhalation exposure components to end-exhaled breath concentrations of naphthalene.
    Kim D; Andersen ME; Chao YC; Egeghy PP; Rappaport SM; Nylander-French LA
    Environ Health Perspect; 2007 Jun; 115(6):894-901. PubMed ID: 17589597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzene and naphthalene in air and breath as indicators of exposure to jet fuel.
    Egeghy PP; Hauf-Cabalo L; Gibson R; Rappaport SM
    Occup Environ Med; 2003 Dec; 60(12):969-76. PubMed ID: 14634191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel.
    Merchant-Borna K; Rodrigues EG; Smith KW; Proctor SP; McClean MD
    Ann Occup Hyg; 2012 Jul; 56(6):736-45. PubMed ID: 22433121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dermal exposure to jet fuel JP-8 significantly contributes to the production of urinary naphthols in fuel-cell maintenance workers.
    Chao YC; Kupper LL; Serdar B; Egeghy PP; Rappaport SM; Nylander-French LA
    Environ Health Perspect; 2006 Feb; 114(2):182-5. PubMed ID: 16451852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.
    Pleil JD; Smith LB; Zelnick SD
    Environ Health Perspect; 2000 Mar; 108(3):183-92. PubMed ID: 10706522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dermal exposure to jet fuel (JP-8) in US Air Force personnel.
    Chao YC; Gibson RL; Nylander-French LA
    Ann Occup Hyg; 2005 Oct; 49(7):639-45. PubMed ID: 16006502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhalation exposure to jet fuel (JP8) among U.S. Air Force personnel.
    Smith KW; Proctor SP; Ozonoff A; McClean MD
    J Occup Environ Hyg; 2010 Oct; 7(10):563-72. PubMed ID: 20694886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixture effects of JP-8 additives on the dermal disposition of jet fuel components.
    Baynes RE; Brooks JD; Budsaba K; Smith CE; Riviere JE
    Toxicol Appl Pharmacol; 2001 Sep; 175(3):269-81. PubMed ID: 11559026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose-dependent production of urinary naphthols among workers exposed to jet fuel (JP-8).
    Serdar B; Egeghy PP; Gibson R; Rappaport SM
    Am J Ind Med; 2004 Sep; 46(3):234-44. PubMed ID: 15307122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urinary biomarkers of occupational jet fuel exposure among Air Force personnel.
    Smith KW; Proctor SP; Ozonoff AL; McClean MD
    J Expo Sci Environ Epidemiol; 2012; 22(1):35-45. PubMed ID: 22044926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of urinary excretion of 1-hydroxypyrene in various scenarios of exposure to polycyclic aromatic hydrocarbons with a generic, cross-chemical predictive PBTK-model.
    Jongeneelen F; ten Berge W
    Int Arch Occup Environ Health; 2012 Aug; 85(6):689-702. PubMed ID: 22038087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dermatotoxicokinetic model of human exposures to jet fuel.
    Kim D; Andersen ME; Nylander-French LA
    Toxicol Sci; 2006 Sep; 93(1):22-33. PubMed ID: 16801332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of DNA damage in workers exposed to JP-8 jet fuel.
    Krieg EF; Mathias PI; Toennis CA; Clark JC; Marlow KL; B'hymer C; Singh NP; Gibson RL; Butler MA
    Mutat Res; 2012 Sep; 747(2):218-27. PubMed ID: 22617435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating dermal exposure to jet fuel (naphthalene) using adhesive tape strip samples.
    Mattorano DA; Kupper LL; Nylander-French LA
    Ann Occup Hyg; 2004 Mar; 48(2):139-46. PubMed ID: 14990435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of real-time breath analysis and physiologically based pharmacokinetic modeling to evaluate dermal absorption of aqueous toluene in human volunteers.
    Thrall KD; Weitz KK; Woodstock AD
    Toxicol Sci; 2002 Aug; 68(2):280-7. PubMed ID: 12151623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological and health effects of exposure to kerosene-based jet fuels and performance additives.
    Ritchie G; Still K; Rossi J; Bekkedal M; Bobb A; Arfsten D
    J Toxicol Environ Health B Crit Rev; 2003; 6(4):357-451. PubMed ID: 12775519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human exposure to the jet fuel, JP-8.
    Tu RH; Mitchell CS; Kay GG; Risby TH
    Aviat Space Environ Med; 2004 Jan; 75(1):49-59. PubMed ID: 14736133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dermal absorption and distribution of topically dosed jet fuels jet-A, JP-8, and JP-8(100).
    Riviere JE; Brooks JD; Monteiro-Riviere NA; Budsaba K; Smith CE
    Toxicol Appl Pharmacol; 1999 Oct; 160(1):60-75. PubMed ID: 10502503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of keratin protein in a tape-stripped skin sample from jet fuel exposed skin.
    Chao YC; Nylander-French LA
    Ann Occup Hyg; 2004 Jan; 48(1):65-73. PubMed ID: 14718347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.