BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17589597)

  • 21. Comparative mixture effects of JP-8(100) additives on the dermal absorption and disposition of jet fuel hydrocarbons in different membrane model systems.
    Muhammad F; Brooks JD; Riviere JE
    Toxicol Lett; 2004 May; 150(3):351-65. PubMed ID: 15110087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the dermal absorption of aqueous toluene in F344 rats using real-time breath analysis and physiologically based pharmacokinetic modeling.
    Thrall KD; Woodstock AD
    J Toxicol Environ Health A; 2002 Dec; 65(24):2087-100. PubMed ID: 12515588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volatile Organic Compounds Off-gassing from Firefighters' Personal Protective Equipment Ensembles after Use.
    Fent KW; Evans DE; Booher D; Pleil JD; Stiegel MA; Horn GP; Dalton J
    J Occup Environ Hyg; 2015; 12(6):404-14. PubMed ID: 25751596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Approaches for evaluating the relevance of multiroute exposures in establishing guideline values for drinking water contaminants.
    Krishnan K; Carrier R
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(3):300-16. PubMed ID: 18781539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Urinary biomarkers of exposure to jet fuel (JP-8).
    Serdar B; Egeghy PP; Waidyanatha S; Gibson R; Rappaport SM
    Environ Health Perspect; 2003 Nov; 111(14):1760-4. PubMed ID: 14594628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The utility of naphthyl-keratin adducts as biomarkers for jet-fuel exposure.
    Kang-Sickel JC; Butler MA; Frame L; Serdar B; Chao YC; Egeghy P; Rappaport SM; Toennis CA; Li W; Borisova T; French JE; Nylander-French LA
    Biomarkers; 2011 Nov; 16(7):590-9. PubMed ID: 21961652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and assessment of dermal and inhalable nickel exposures in nickel production and primary user industries.
    Hughson GW; Galea KS; Heim KE
    Ann Occup Hyg; 2010 Jan; 54(1):8-22. PubMed ID: 19759172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of in vivo jet fuel exposure on subsequent in vitro dermal absorption of individual aromatic and aliphatic hydrocarbon fuel constituents.
    Muhammad F; Monteiro-Riviere NA; Baynes RE; Riviere JE
    J Toxicol Environ Health A; 2005 May; 68(9):719-37. PubMed ID: 16020199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dermal absorption and penetration of jet fuel components in humans.
    Kim D; Andersen ME; Nylander-French LA
    Toxicol Lett; 2006 Aug; 165(1):11-21. PubMed ID: 16497449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PBPK modeling of the percutaneous absorption of perchloroethylene from a soil matrix in rats and humans.
    Poet TS; Weitz KK; Gies RA; Edwards JA; Thrall KD; Corley RA; Tanojo H; Hui X; Maibach HI; Wester RC
    Toxicol Sci; 2002 May; 67(1):17-31. PubMed ID: 11961212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using population physiologically based pharmacokinetic modeling to determine optimal sampling times and to interpret biological exposure markers: The example of occupational exposure to styrene.
    Verner MA; McDougall R; Johanson G
    Toxicol Lett; 2012 Sep; 213(2):299-304. PubMed ID: 22677344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dermal exposure to polycyclic aromatic hydrocarbons in asphalt workers.
    Fustinoni S; Campo L; Cirla PE; Martinotti I; Buratti M; Longhi O; Foà V; Bertazzi P
    Occup Environ Med; 2010 Jul; 67(7):456-63. PubMed ID: 19914913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A compartmental model for the prediction of breath concentration and absorbed dose of chloroform after exposure while showering.
    Chinery RL; Gleason AK
    Risk Anal; 1993 Feb; 13(1):51-62. PubMed ID: 8451460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiologically based toxicokinetic modeling of inhaled ethyl tertiary-butyl ether in humans.
    Nihlén A; Johanson G
    Toxicol Sci; 1999 Oct; 51(2):184-94. PubMed ID: 10543020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxicology and carcinogenesis studies of naphthalene (cas no. 91-20-3) in F344/N rats (inhalation studies).
    Natl Toxicol Program Tech Rep Ser; 2000 Dec; (500):1-173. PubMed ID: 11725561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood and exhaled air can be used for biomonitoring of hydrofluorocarbon exposure.
    Ernstgård L; Sjögren B; Gunnare S; Johanson G
    Toxicol Lett; 2014 Feb; 225(1):102-9. PubMed ID: 24296009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Volatile Organic Compounds in Blood as Biomarkers of Exposure to JP-8 Jet Fuel Among US Air Force Personnel.
    Maule AL; Proctor SP; Blount BC; Chambers DM; McClean MD
    J Occup Environ Med; 2016 Jan; 58(1):24-9. PubMed ID: 26716845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a physiologically based toxicokinetic model for butadiene and four major metabolites in humans: global sensitivity analysis for experimental design issues.
    Brochot C; Smith TJ; Bois FY
    Chem Biol Interact; 2007 May; 167(3):168-83. PubMed ID: 17397815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes.
    Haddad S; Tardif GC; Tardif R
    J Toxicol Environ Health A; 2006 Dec; 69(23):2095-136. PubMed ID: 17060096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A dermal model for spray painters. Part II: estimating the deposition and uptake of solvents.
    Semple S; Brouwer DH; Dick F; Cherrie JW
    Ann Occup Hyg; 2001 Jan; 45(1):25-33. PubMed ID: 11137696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.