BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17590018)

  • 1. Quantitative characterization of weak self-association in concentrated solutions of immunoglobulin G via the measurement of sedimentation equilibrium and osmotic pressure.
    Jiménez M; Rivas G; Minton AP
    Biochemistry; 2007 Jul; 46(28):8373-8. PubMed ID: 17590018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sedimentation equilibrium in a solution containing an arbitrary number of solute species at arbitrary concentrations: theory and application to concentrated solutions of ribonuclease.
    Zorrilla S; Jiménez M; Lillo P; Rivas G; Minton AP
    Biophys Chem; 2004 Mar; 108(1-3):89-100. PubMed ID: 15043923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracer sedimentation equilibrium: a powerful tool for the quantitative characterization of macromolecular self- and hetero-associations in solution.
    Rivas G; Minton AP
    Biochem Soc Trans; 2003 Oct; 31(Pt 5):1015-9. PubMed ID: 14505471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular interactions of IgG1 monoclonal antibodies at high concentrations characterized by light scattering.
    Scherer TM; Liu J; Shire SJ; Minton AP
    J Phys Chem B; 2010 Oct; 114(40):12948-57. PubMed ID: 20849134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of the self-association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: theory, experiment, and biological significance.
    Rivas G; Fernandez JA; Minton AP
    Biochemistry; 1999 Jul; 38(29):9379-88. PubMed ID: 10413513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions.
    Binabaji E; Rao S; Zydney AL
    Biotechnol Bioeng; 2014 Mar; 111(3):529-36. PubMed ID: 23996891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody.
    Yang TC; Langford AJ; Kumar S; Ruesch JC; Wang W
    J Pharm Sci; 2016 Aug; 105(8):2328-37. PubMed ID: 27373839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic multitechnique approach for detection and characterization of reversible self-association during formulation development of therapeutic antibodies.
    Esfandiary R; Hayes DB; Parupudi A; Casas-Finet J; Bai S; Samra HS; Shah AU; Sathish HA
    J Pharm Sci; 2013 Sep; 102(9):3089-99. PubMed ID: 23794522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of osmotic pressure data for aqueous protein solutions via a multicomponent model.
    Druchok M; Kalyuzhnyi Y; Rescic J; Vlachy V
    J Chem Phys; 2006 Mar; 124(11):114902. PubMed ID: 16555916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatographic evidence of the self-association of oxyhemoglobin in concentrated solutions: its biological implications.
    Nichol LW; Siezen RJ; Winzor DJ
    Biophys Chem; 1979 Jul; 10(1):17-26. PubMed ID: 39647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allowance for thermodynamic non-ideality in the characterization of protein self-association by frontal exclusion chromatography: hemoglobin revisited.
    Winzor DJ; Wills PR
    Biophys Chem; 2003 May; 104(1):345-59. PubMed ID: 12834853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing IgG concentration modulates the conformational heterogeneity and bonding network that influence solution properties.
    Kamerzell TJ; Kanai S; Liu J; Shire SJ; Wang YJ
    J Phys Chem B; 2009 Apr; 113(17):6109-18. PubMed ID: 19341314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cosolute effects on the chemical potential and interactions of an IgG1 monoclonal antibody at high concentrations.
    Scherer TM
    J Phys Chem B; 2013 Feb; 117(8):2254-66. PubMed ID: 23330570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static light scattering from concentrated protein solutions, I: General theory for protein mixtures and application to self-associating proteins.
    Minton AP
    Biophys J; 2007 Aug; 93(4):1321-8. PubMed ID: 17526566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of methods for characterizing nonideal solute self-association by sedimentation equilibrium.
    Scott DJ; Winzor DJ
    Biophys J; 2009 Aug; 97(3):886-96. PubMed ID: 19651047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular weights and molecular-weight distributions from ultracentrifugation of nonideal solutions.
    Wan PJ; Adams ET
    Biophys Chem; 1976 Jul; 5(1-2):207-41. PubMed ID: 963217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective.
    McBride DW; Rodgers VG
    Biophys Chem; 2013 Dec; 184():79-86. PubMed ID: 24141326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of weak protein dimerization by direct analysis of sedimentation equilibrium distributions: the INVEQ approach.
    Winzor DJ; Wills PR
    Anal Biochem; 2007 Sep; 368(2):168-77. PubMed ID: 17540333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hidden self-association of proteins.
    Muramatsu N; Minton AP
    J Mol Recognit; 1989 Apr; 1(4):166-71. PubMed ID: 2631864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical ultracentrifugation for the study of protein association and assembly.
    Howlett GJ; Minton AP; Rivas G
    Curr Opin Chem Biol; 2006 Oct; 10(5):430-6. PubMed ID: 16935549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.