These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 17590033)
1. Porous biomaterials obtained using supercritical CO 2- water emulsions. Palocci C; Barbetta A; La Grotta A; Dentini M Langmuir; 2007 Jul; 23(15):8243-51. PubMed ID: 17590033 [TBL] [Abstract][Full Text] [Related]
2. Porous alginate hydrogels: synthetic methods for tailoring the porous texture. Barbetta A; Barigelli E; Dentini M Biomacromolecules; 2009 Aug; 10(8):2328-37. PubMed ID: 19591464 [TBL] [Abstract][Full Text] [Related]
3. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. Butler R; Hopkinson I; Cooper AI J Am Chem Soc; 2003 Nov; 125(47):14473-81. PubMed ID: 14624597 [TBL] [Abstract][Full Text] [Related]
5. Biocompatibility and biodegradation of novel PHB porous substrates with controlled multi-pore size by emulsion templates method. Zhijiang C J Mater Sci Mater Med; 2006 Dec; 17(12):1297-303. PubMed ID: 17143761 [TBL] [Abstract][Full Text] [Related]
6. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Lévesque SG; Lim RM; Shoichet MS Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718 [TBL] [Abstract][Full Text] [Related]
7. Tailoring the porosity and morphology of gelatin-methacrylate polyHIPE scaffolds for tissue engineering applications. Barbetta A; Dentini M; Zannoni EM; De Stefano ME Langmuir; 2005 Dec; 21(26):12333-41. PubMed ID: 16343011 [TBL] [Abstract][Full Text] [Related]
8. A novel design of injectable porous hydrogels with in situ pore formation. Yom-Tov O; Neufeld L; Seliktar D; Bianco-Peled H Acta Biomater; 2014 Oct; 10(10):4236-46. PubMed ID: 25034645 [TBL] [Abstract][Full Text] [Related]
9. Emulsion templated scaffolds that include gelatin and glycosaminoglycans. Barbetta A; Massimi M; Di Rosario B; Nardecchia S; De Colli M; Devirgiliis LC; Dentini M Biomacromolecules; 2008 Oct; 9(10):2844-56. PubMed ID: 18817439 [TBL] [Abstract][Full Text] [Related]
11. Carbon dioxide/water, water/carbon dioxide emulsions and double emulsions stabilized with a nonionic biocompatible surfactant. Torino E; Reverchon E; Johnston KP J Colloid Interface Sci; 2010 Aug; 348(2):469-78. PubMed ID: 20537346 [TBL] [Abstract][Full Text] [Related]
12. Novel synthesis of macroporous poly(N-isopropylacrylamide) hydrogels using oil-in-water emulsions. Tokuyama H; Kanehara A Langmuir; 2007 Oct; 23(22):11246-51. PubMed ID: 17880115 [TBL] [Abstract][Full Text] [Related]
13. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting? Tayton E; Purcell M; Aarvold A; Smith JO; Kalra S; Briscoe A; Shakesheff K; Howdle SM; Dunlop DG; Oreffo RO Acta Biomater; 2012 May; 8(5):1918-27. PubMed ID: 22307029 [TBL] [Abstract][Full Text] [Related]
18. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity]. Zhang Y; Li B; Li J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):135-9. PubMed ID: 17357459 [TBL] [Abstract][Full Text] [Related]
19. Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process. García-González CA; Vega-González A; López-Periago AM; Subra-Paternault P; Domingo C Acta Biomater; 2009 May; 5(4):1094-103. PubMed ID: 19041288 [TBL] [Abstract][Full Text] [Related]