These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 17590043)

  • 1. Analysis of conformer stability for 1,3,8-trihydroxynaphthalene: natural substrate of fungal trihydroxynaphthalene reductase.
    Rostkowski M; Paneth P
    J Phys Chem B; 2007 Jul; 111(28):8314-20. PubMed ID: 17590043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the first inhibitors of trihydroxynaphthalene reductase from Curvularia lunata: synthesis of artificial substrate, homology modelling and initial screening.
    Brunskole M; Stefane B; Zorko K; Anderluh M; Stojan J; Lanisnik Rizner T; Gobec S
    Bioorg Med Chem; 2008 Jun; 16(11):5881-9. PubMed ID: 18482840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trihydroxynaphthalene reductase from Magnaporthe grisea: realization of an active center inhibitor and elucidation of the kinetic mechanism.
    Thompson JE; Basarab GS; Andersson A; Lindqvist Y; Jordan DB
    Biochemistry; 1997 Feb; 36(7):1852-60. PubMed ID: 9048570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetrahydroxynaphthalene reductase.
    Thompson JE; Fahnestock S; Farrall L; Liao DI; Valent B; Jordan DB
    J Biol Chem; 2000 Nov; 275(45):34867-72. PubMed ID: 10956664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two homologous fungal carbonyl reductases with different substrate specificities.
    Kristan K; Brunskole M; Stojan J; Rizner TL
    Chem Biol Interact; 2009 Mar; 178(1-3):295-302. PubMed ID: 18973748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic asymmetric synthesis of (R)-GTRI-02 and (3S,4R)-3,4-dihydroxy-3,4-dihydronaphthalen-1(2H)-ones.
    Husain SM; Schätzle MA; Röhr C; Lüdeke S; Müller M
    Org Lett; 2012 Jul; 14(14):3600-3. PubMed ID: 22738326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the enol imine <--> enaminone tautomeric equilibrium in organic solvents.
    Nagy PI; Fabian WM
    J Phys Chem B; 2006 Dec; 110(49):25026-32. PubMed ID: 17149926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme mechanisms from molecular modeling and isotope effects.
    Dybala-Defratyka A; Rostkowski M; Paneth P
    Arch Biochem Biophys; 2008 Jun; 474(2):274-82. PubMed ID: 18237539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural account of substrate and inhibitor specificity differences between two naphthol reductases.
    Liao DI; Thompson JE; Fahnestock S; Valent B; Jordan DB
    Biochemistry; 2001 Jul; 40(30):8696-704. PubMed ID: 11467929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A second reductase gene involved in melanin biosynthesis in the sap-staining fungus Ophiostoma floccosum.
    Wang HL; Breuil C
    Mol Genet Genomics; 2002 Jul; 267(5):557-63. PubMed ID: 12172794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partition analysis of an enzyme acting concurrently upon two substrates in a continuous multiwavelength assay.
    Thompson JE; Jordan DB
    Anal Biochem; 1998 Feb; 256(1):7-13. PubMed ID: 9466792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of trihydroxynaphthalene reductase-fungicide complexes: implications for structure-based design and catalysis.
    Liao D; Basarab GS; Gatenby AA; Valent B; Jordan DB
    Structure; 2001 Jan; 9(1):19-27. PubMed ID: 11342131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous binding of coenzyme and two ligand molecules into the active site of fungal trihydroxynaphthalene reductase.
    Stojan J; Brunskole M; Rizner TL
    Chem Biol Interact; 2009 Mar; 178(1-3):268-73. PubMed ID: 19071099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2,3-Dihydro-2,5-dihydroxy-4H-benzopyran-4-one: a nonphysiological substrate for fungal melanin biosynthetic enzymes.
    Thompson JE; Basarab GS; Pierce J; Hodge CN; Jordan DB
    Anal Biochem; 1998 Feb; 256(1):1-6. PubMed ID: 9466791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trihydroxynaphthalene reductase of Curvularia lunata--a target for flavonoid action?
    Brunskole M; Zorko K; Kerbler V; Martens S; Stojan J; Gobec S; Lanisnik Rizner T
    Chem Biol Interact; 2009 Mar; 178(1-3):259-67. PubMed ID: 19010313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined experimental and theoretical study on the conformational behavior of a calix[6]arene.
    Boulet B; Joubert L; Cote G; Bouvier-Capely C; Cossonnet C; Adamo C
    J Phys Chem A; 2006 May; 110(17):5782-91. PubMed ID: 16640372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization and preliminary x-ray diffraction study of 1 ,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea.
    Andersson A; Jordan D; Schneider G; Valent B; Lindqvist Y
    Proteins; 1996 Apr; 24(4):525-7. PubMed ID: 8860003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel inhibitors of trihydroxynaphthalene reductase with antifungal activity identified by ligand-based and structure-based virtual screening.
    Brunskole Svegelj M; Turk S; Brus B; Lanisnik Rizner T; Stojan J; Gobec S
    J Chem Inf Model; 2011 Jul; 51(7):1716-24. PubMed ID: 21667970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen bonding pathways in human dihydroorotate dehydrogenase.
    Small YA; Guallar V; Soudackov AV; Hammes-Schiffer S
    J Phys Chem B; 2006 Oct; 110(39):19704-10. PubMed ID: 17004840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for involvement of two naphthol reductases in the first reduction step of melanin biosynthesis pathway of Colletotrichum lagenarium.
    Tsuji G; Sugahara T; Fujii I; Mori Y; Ebizuka Y; Shiraishi T; Kubo Y
    Mycol Res; 2003 Jul; 107(Pt 7):854-60. PubMed ID: 12967213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.