These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 17590043)

  • 21. Selection of a potent inhibitor of trihydroxynaphthalene reductase by sorting disease control data.
    Liao DI; Basarab GS; Gatenby AA; Jordan DB
    Bioorg Med Chem Lett; 2000 Mar; 10(5):491-4. PubMed ID: 10743955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A flexible lid controls access to the active site in 1,3,8-trihydroxynaphthalene reductase.
    Andersson A; Jordan D; Schneider G; Lindqvist Y
    FEBS Lett; 1997 Jan; 400(2):173-6. PubMed ID: 9001392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen atom transfer energetics: assessment of the effect of method and solvent.
    Dinescu A; Whiteley C; Combs RR; Cundari TR
    J Phys Chem A; 2006 Mar; 110(11):4053-6. PubMed ID: 16539428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tetrahydroxynaphthalene reductase: catalytic properties of an enzyme involved in reductive asymmetric naphthol dearomatization.
    Schätzle MA; Flemming S; Husain SM; Richter M; Günther S; Müller M
    Angew Chem Int Ed Engl; 2012 Mar; 51(11):2643-6. PubMed ID: 22308069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Density functional theory of solvation and its relation to implicit solvent models.
    Ramirez R; Borgis D
    J Phys Chem B; 2005 Apr; 109(14):6754-63. PubMed ID: 16851760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-based design of inhibitors of the rice blast fungal enzyme trihydroxynaphthalene reductase.
    Jordan DB; Basarab GS; Liao DI; Johnson WM; Winzenberg KN; Winkler DA
    J Mol Graph Model; 2001; 19(5):434-47, 470-1. PubMed ID: 11552692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational and experimental studies on the catalytic mechanism of biliverdin-IXbeta reductase.
    Smith LJ; Browne S; Mulholland AJ; Mantle TJ
    Biochem J; 2008 May; 411(3):475-84. PubMed ID: 18241201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical studies of dissociative phosphoryl transfer in interconversion of phosphoenolpyruvate to phosphonopyruvate: solvent effects, thio effects, and implications for enzymatic reactions.
    Xu D; Guo H; Liu Y; York DM
    J Phys Chem B; 2005 Jul; 109(28):13827-34. PubMed ID: 16852731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical consideration on the optimum pH of bilirubin oxidase.
    Otsuka K; Sugihara T; Tsujino Y; Osakai T; Tamiya E
    Anal Biochem; 2007 Nov; 370(1):98-106. PubMed ID: 17626778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ
    J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. X-ray structure of Arabidopsis At1g77680, 12-oxophytodienoate reductase isoform 1.
    Fox BG; Malone TE; Johnson KA; Madson SE; Aceti D; Bingman CA; Blommel PG; Buchan B; Burns B; Cao J; Cornilescu C; Doreleijers J; Ellefson J; Frederick R; Geetha H; Hruby D; Jeon WB; Kimball T; Kunert J; Markley JL; Newman C; Olson A; Peterson FC; Phillips GN; Primm J; Ramirez B; Rosenberg NS; Runnels M; Seder K; Shaw J; Smith DW; Sreenath H; Song J; Sussman MR; Thao S; Troestler D; Tyler E; Tyler R; Ulrich E; Vinarov D; Vojtik F; Volkman BF; Wesenberg G; Wrobel RL; Zhang J; Zhao Q; Zolnai Z
    Proteins; 2005 Oct; 61(1):206-8. PubMed ID: 16080145
    [No Abstract]   [Full Text] [Related]  

  • 34. Solvent effects in the excited-state tautomerization of 7-azaindole: a theoretical study.
    Fang H; Kim Y
    J Phys Chem B; 2011 Dec; 115(50):15048-58. PubMed ID: 22074681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The first de novo designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase.
    Heikkilä T; Thirumalairajan S; Davies M; Parsons MR; McConkey AG; Fishwick CW; Johnson AP
    Bioorg Med Chem Lett; 2006 Jan; 16(1):88-92. PubMed ID: 16236496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polarizable water networks in ligand-metalloprotein recognition. Impact on the relative complexation energies of Zn-dependent phosphomannose isomerase with D-mannose 6-phosphate surrogates.
    Gresh N; de Courcy B; Piquemal JP; Foret J; Courtiol-Legourd S; Salmon L
    J Phys Chem B; 2011 Jun; 115(25):8304-16. PubMed ID: 21650197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A DFT study of solvation effects on the tautomeric equilibrium and catalytic ylide generation of thiamin models.
    Alstrup Lie M; Schiøtt B
    J Comput Chem; 2008 May; 29(7):1037-47. PubMed ID: 18058864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DFT-based linear solvation energy relationships for the infrared spectral shifts of acetone in polar and nonpolar organic solvents.
    Chang CM
    J Phys Chem A; 2008 Mar; 112(11):2482-8. PubMed ID: 18284222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.