These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17590049)

  • 1. The alpha-effect in gas-phase SN2 reactions: existence and the origin of the effect.
    Ren Y; Yamataka H
    J Org Chem; 2007 Jul; 72(15):5660-7. PubMed ID: 17590049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G2(+) investigation on the alpha-effect in the SN2 reactions at saturated carbon.
    Ren Y; Yamataka H
    Chemistry; 2007; 13(2):677-82. PubMed ID: 17009371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The α-effect exhibited in gas-phase S(N)2@N and S(N)2@C reactions.
    Ren Y; Wei XG; Ren SJ; Lau KC; Wong NB; Li WK
    J Comput Chem; 2013 Sep; 34(23):1997-2005. PubMed ID: 23784794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does alpha-effect exist in E2 reactions? A G2(+) investigation.
    Ren Y; Yamataka H
    J Comput Chem; 2009 Feb; 30(3):358-65. PubMed ID: 18613068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The alpha-effect in gas-phase SN2 reactions revisited.
    Ren Y; Yamataka H
    Org Lett; 2006 Jan; 8(1):119-21. PubMed ID: 16381582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive theoretical studies on the gas phase SN2 reactions of anionic nucleophiles toward chloroamine and N-chlorodimethylamine with inversion and retention mechanisms.
    Ren Y; Geng S; Wei XG; Wong NB; Li WK
    J Phys Chem A; 2011 Dec; 115(47):13965-74. PubMed ID: 21988223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of alpha-nucleophiles with alkyl chlorides: competition between S(N)2 and E2 mechanisms and the gas-phase alpha-effect.
    Villano SM; Eyet N; Lineberger WC; Bierbaum VM
    J Am Chem Soc; 2009 Jun; 131(23):8227-33. PubMed ID: 19456156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the α-effect in gas-phase S(N)2 reactions of microsolvated anions.
    Thomsen DL; Reece JN; Nichols CM; Hammerum S; Bierbaum VM
    J Am Chem Soc; 2013 Oct; 135(41):15508-14. PubMed ID: 24047410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsolvation effects on the reactivity of oxy-nucleophiles: the case of gas-phase S
    Yun-Yun L; Fang-Zhou Q; Jun Z; Yi R; Kai-Chung L
    J Mol Model; 2017 Jun; 23(6):192. PubMed ID: 28528446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The α-effect in gas-phase SN2 reactions of microsolvated anions: methanol as a solvent.
    Thomsen DL; Reece JN; Nichols CM; Hammerum S; Bierbaum VM
    J Phys Chem A; 2014 Sep; 118(37):8060-6. PubMed ID: 24117206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of substituent and leaving group on the gas-phase SN2 reactions of phenoxides with halomethanes: a DFT investigation.
    Li QG; Xue Y
    J Phys Chem A; 2009 Sep; 113(38):10359-66. PubMed ID: 19711938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the reactivity of microhydrated α-nucleophile in the anionic gas-phase S(N)2 reaction.
    Zhao WY; Yu J; Ren SJ; Wei XG; Qiu FZ; Li PH; Li H; Zhou YP; Yin CZ; Chen AP; Li H; Zhang L; Zhu J; Ren Y; Lau KC
    J Comput Chem; 2015 Apr; 36(11):844-52. PubMed ID: 25760852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone.
    Li QG; Xu K; Ren Y
    J Phys Chem A; 2015 Apr; 119(17):3878-86. PubMed ID: 25837687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the SN2 benzylic effect.
    Galabov B; Nikolova V; Wilke JJ; Schaefer HF; Allen WD
    J Am Chem Soc; 2008 Jul; 130(30):9887-96. PubMed ID: 18597451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new insight into using chlorine leaving group and nucleophile carbon kinetic isotope effects to determine substituent effects on the structure of SN2 transition states.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2007 Aug; 111(33):8110-20. PubMed ID: 17663535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects on the reactivity by changing the electrophilic center from C==O to C==S: contrasting reactivity of hydroxide, p-chlorophenoxide, and butan-2,3-dione monoximate in DMSO/H2O mixtures.
    Um IH; Han JY; Buncel E
    Chemistry; 2009; 15(4):1011-7. PubMed ID: 19065694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base-induced decomposition of alkyl hydroperoxides in the gas phase. Part 3. Kinetics and dynamics in HO- + CH3OOH, C2H5OOH, and tert-C4H9OOH reactions.
    Kato S; Ellison GB; Bierbaum VM; Blanksby SJ
    J Phys Chem A; 2008 Oct; 112(39):9516-25. PubMed ID: 18570357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmark
    Tasi DA; Czakó G
    Phys Chem Chem Phys; 2024 Jun; 26(22):16048-16059. PubMed ID: 38779842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Reactivity Trends in the E2 and SN2 Reactions of X(-) + CH3CH2Cl (X = F, Cl, Br, HO, HS, HSe, NH2 PH2, AsH2, CH3, SiH3, and GeH3).
    Wu XP; Sun XM; Wei XG; Ren Y; Wong NB; Li WK
    J Chem Theory Comput; 2009 Jun; 5(6):1597-606. PubMed ID: 26609852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.