These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17590151)

  • 1. Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle.
    Birla RK; Huang YC; Dennis RG
    Tissue Eng; 2007 Sep; 13(9):2239-48. PubMed ID: 17590151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of streptomycin on the active force of bioengineered heart muscle in response to controlled stretch.
    Birla RK; Huang YC; Dennis RG
    In Vitro Cell Dev Biol Anim; 2008; 44(7):253-60. PubMed ID: 18568374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs.
    Salazar BH; Cashion AT; Dennis RG; Birla RK
    Cardiovasc Eng Technol; 2015 Dec; 6(4):533-45. PubMed ID: 26577484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating the functional performance of bioengineered heart muscle using growth factor stimulation.
    Huang YC; Khait L; Birla RK
    Ann Biomed Eng; 2008 Aug; 36(8):1372-82. PubMed ID: 18500554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration.
    Huang YC; Khait L; Birla RK
    J Biomed Mater Res A; 2007 Mar; 80(3):719-31. PubMed ID: 17154158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.
    Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D
    Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion.
    Lu L; Mende M; Yang X; Körber HF; Schnittler HJ; Weinert S; Heubach J; Werner C; Ravens U
    Tissue Eng Part A; 2013 Feb; 19(3-4):403-14. PubMed ID: 22991978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a microperfusion system for the culture of bioengineered heart muscle.
    Hecker L; Khait L; Radnoti D; Birla R
    ASAIO J; 2008; 54(3):284-94. PubMed ID: 18496279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering.
    Barash Y; Dvir T; Tandeitnik P; Ruvinov E; Guterman H; Cohen S
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1417-26. PubMed ID: 20367291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. I-Wire Heart-on-a-Chip II: Biomechanical analysis of contractile, three-dimensional cardiomyocyte tissue constructs.
    Schroer AK; Shotwell MS; Sidorov VY; Wikswo JP; Merryman WD
    Acta Biomater; 2017 Jan; 48():79-87. PubMed ID: 27818306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electro-tensile bioreactor for 3-D culturing of cardiomyocytes. A bioreactor system that simulates the myocardium's electrical and mechanical response in vivo.
    Feng Z; Matsumoto T; Nomura Y; Nakamura T
    IEEE Eng Med Biol Mag; 2005; 24(4):73-9. PubMed ID: 16119216
    [No Abstract]   [Full Text] [Related]  

  • 12. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue.
    Birla RK; Borschel GH; Dennis RG; Brown DL
    Tissue Eng; 2005; 11(5-6):803-13. PubMed ID: 15998220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function.
    Morgan KY; Black LD
    J Tissue Eng Regen Med; 2017 Feb; 11(2):342-353. PubMed ID: 24916022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental study of cardiac muscle tissue engineering in bioreactor].
    Liu X; Wang CY; Guo XM; OuYang WQ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2003 Feb; 25(1):7-12. PubMed ID: 12905598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. It's all in the timing: modeling isovolumic contraction through development and disease with a dynamic dual electromechanical bioreactor system.
    Morgan KY; Black LD
    Organogenesis; 2014; 10(3):317-22. PubMed ID: 25482314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-perfusion for cardiac tissue engineering: development of a bench-top system for the culture of primary cardiac cells.
    Khait L; Hecker L; Radnoti D; Birla RK
    Ann Biomed Eng; 2008 May; 36(5):713-25. PubMed ID: 18274906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bioreactor to Apply Multimodal Physical Stimuli to Cultured Cells.
    Edelmann JC; Jones L; Peyronnet R; Lu L; Kohl P; Ravens U
    Methods Mol Biol; 2016; 1502():21-33. PubMed ID: 27032949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration.
    Dvir T; Benishti N; Shachar M; Cohen S
    Tissue Eng; 2006 Oct; 12(10):2843-52. PubMed ID: 17518653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of left ventricular stretching in model cultivations with neonatal cardiomyocytes in a whole-heart bioreactor.
    Hülsmann J; Aubin H; Wehrmann A; Lichtenberg A; Akhyari P
    Biotechnol Bioeng; 2017 May; 114(5):1107-1117. PubMed ID: 28019665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.