These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 17590222)
1. The S subunit of D-ornithine aminomutase from Clostridium sticklandii is responsible for the allosteric regulation in D-alpha-lysine aminomutase. Tseng CH; Yang CH; Lin HJ; Wu C; Chen HP FEMS Microbiol Lett; 2007 Sep; 274(1):148-53. PubMed ID: 17590222 [TBL] [Abstract][Full Text] [Related]
2. Coexpression, purification and characterization of the E and S subunits of coenzyme B(12) and B(6) dependent Clostridium sticklandii D-ornithine aminomutase in Escherichia coli. Chen HP; Hsui FC; Lin LY; Ren CT; Wu SH Eur J Biochem; 2004 Nov; 271(21):4293-7. PubMed ID: 15511235 [TBL] [Abstract][Full Text] [Related]
3. Cloning, sequencing, heterologous expression, purification, and characterization of adenosylcobalamin-dependent D-lysine 5, 6-aminomutase from Clostridium sticklandii. Chang CH; Frey PA J Biol Chem; 2000 Jan; 275(1):106-14. PubMed ID: 10617592 [TBL] [Abstract][Full Text] [Related]
4. Cloning, sequencing, heterologous expression, purification, and characterization of adenosylcobalamin-dependent D-ornithine aminomutase from Clostridium sticklandii. Chen HP; Wu SH; Lin YL; Chen CM; Tsay SS J Biol Chem; 2001 Nov; 276(48):44744-50. PubMed ID: 11577113 [TBL] [Abstract][Full Text] [Related]
5. Isotope effects for deuterium transfer and mutagenesis of Tyr187 provide insight into controlled radical chemistry in adenosylcobalamin-dependent ornithine 4,5-aminomutase. Makins C; Whitelaw DA; Mu C; Walsby CJ; Wolthers KR Biochemistry; 2014 Aug; 53(33):5432-43. PubMed ID: 25100213 [TBL] [Abstract][Full Text] [Related]
6. A locking mechanism preventing radical damage in the absence of substrate, as revealed by the x-ray structure of lysine 5,6-aminomutase. Berkovitch F; Behshad E; Tang KH; Enns EA; Frey PA; Drennan CL Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15870-5. PubMed ID: 15514022 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of radical-based catalysis in the reaction catalyzed by adenosylcobalamin-dependent ornithine 4,5-aminomutase. Wolthers KR; Rigby SE; Scrutton NS J Biol Chem; 2008 Dec; 283(50):34615-25. PubMed ID: 18948256 [TBL] [Abstract][Full Text] [Related]
8. The molecular mechanism of the open-closed protein conformational cycle transitions and coupled substrate binding, activation and product release events in lysine 5,6-aminomutase. Lo HH; Lin HH; Maity AN; Ke SC Chem Commun (Camb); 2016 May; 52(38):6399-402. PubMed ID: 27086547 [TBL] [Abstract][Full Text] [Related]
9. Large-scale domain dynamics and adenosylcobalamin reorientation orchestrate radical catalysis in ornithine 4,5-aminomutase. Wolthers KR; Levy C; Scrutton NS; Leys D J Biol Chem; 2010 Apr; 285(18):13942-50. PubMed ID: 20106986 [TBL] [Abstract][Full Text] [Related]
10. A conformational sampling model for radical catalysis in pyridoxal phosphate- and cobalamin-dependent enzymes. Menon BR; Fisher K; Rigby SE; Scrutton NS; Leys D J Biol Chem; 2014 Dec; 289(49):34161-74. PubMed ID: 25213862 [TBL] [Abstract][Full Text] [Related]
11. Mutagenesis of a conserved glutamate reveals the contribution of electrostatic energy to adenosylcobalamin co-C bond homolysis in ornithine 4,5-aminomutase and methylmalonyl-CoA mutase. Makins C; Pickering AV; Mariani C; Wolthers KR Biochemistry; 2013 Feb; 52(5):878-88. PubMed ID: 23311430 [TBL] [Abstract][Full Text] [Related]
12. Optimal electrostatic interactions between substrate and protein are essential for radical chemistry in ornithine 4,5-aminomutase. Makins C; Whitelaw DA; McGregor M; Petit A; Mothersole RG; Prosser KE; Wolthers KR Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1077-1084. PubMed ID: 28528213 [TBL] [Abstract][Full Text] [Related]
13. A novel lysine 2,3-aminomutase encoded by the yodO gene of bacillus subtilis: characterization and the observation of organic radical intermediates. Chen D; Ruzicka FJ; Frey PA Biochem J; 2000 Jun; 348 Pt 3(Pt 3):539-49. PubMed ID: 10839984 [TBL] [Abstract][Full Text] [Related]
14. Magnetic field effects on coenzyme B Chen JR; Ke SC Phys Chem Chem Phys; 2018 May; 20(18):13068-13074. PubMed ID: 29713722 [TBL] [Abstract][Full Text] [Related]
15. Lysine 2,3-aminomutase: rapid mix-freeze-quench electron paramagnetic resonance studies establishing the kinetic competence of a substrate-based radical intermediate. Chang CH; Ballinger MD; Reed GH; Frey PA Biochemistry; 1996 Aug; 35(34):11081-4. PubMed ID: 8780510 [TBL] [Abstract][Full Text] [Related]
16. Lysine 2,3-aminomutase: is adenosylmethionine a poor man's adenosylcobalamin? Frey PA FASEB J; 1993 May; 7(8):662-70. PubMed ID: 8500691 [TBL] [Abstract][Full Text] [Related]
17. Glutamate 338 is an electrostatic facilitator of C-Co bond breakage in a dynamic/electrostatic model of catalysis by ornithine aminomutase. Menon BR; Menon N; Fisher K; Rigby SE; Leys D; Scrutton NS FEBS J; 2015 Apr; 282(7):1242-55. PubMed ID: 25627283 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a Structurally Distinct ATP-Dependent Reactivating Factor of Adenosylcobalamin-Dependent Lysine 5,6-Aminomutase. Darbyshire AL; Wolthers KR Biochemistry; 2024 Apr; 63(7):913-925. PubMed ID: 38471967 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of lysine 2,3-aminomutase by the alternative substrate 4-thialysine and characterization of the 4-thialysyl radical intermediate. Miller J; Bandarian V; Reed GH; Frey PA Arch Biochem Biophys; 2001 Mar; 387(2):281-8. PubMed ID: 11370852 [TBL] [Abstract][Full Text] [Related]
20. Electron transfer in the substrate-dependent suicide inactivation of lysine 5,6-aminomutase. Tang KH; Chang CH; Frey PA Biochemistry; 2001 May; 40(17):5190-9. PubMed ID: 11318641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]