These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 17590224)
41. Structure and function of the arginine repressor-operator complex from Bacillus subtilis. Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186 [TBL] [Abstract][Full Text] [Related]
42. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. Ott E; Stolz J; Lehmann M; Mack M RNA Biol; 2009; 6(3):276-80. PubMed ID: 19333008 [TBL] [Abstract][Full Text] [Related]
43. Bacillus subtilis GlnR contains an autoinhibitory C-terminal domain required for the interaction with glutamine synthetase. Wray LV; Fisher SH Mol Microbiol; 2008 Apr; 68(2):277-85. PubMed ID: 18331450 [TBL] [Abstract][Full Text] [Related]
44. [Operon of riboflavin biosynthesis in Bacillus subtilis. XVI. Localization of the ribC-group markers on the chromosome]. Chernik TP; Bresler SE; Machkovskiĭ VV; Perumov DA Genetika; 1979 Sep; 15(9):1569-77. PubMed ID: 114452 [TBL] [Abstract][Full Text] [Related]
45. The regulator protein PyrR of Bacillus subtilis specifically interacts in vivo with three untranslated regions within pyr mRNA of pyrimidine biosynthesis. Hobl B; Mack M Microbiology (Reading); 2007 Mar; 153(Pt 3):693-700. PubMed ID: 17322189 [TBL] [Abstract][Full Text] [Related]
46. Expression, localization and modification of YxeE spore coat protein in Bacillus subtilis. Kuwana R; Takamatsu H; Watabe K J Biochem; 2007 Dec; 142(6):681-9. PubMed ID: 17905812 [TBL] [Abstract][Full Text] [Related]
48. [Operon of riboflavin biosynthesis in Bacillus subtilis. XVII. A study of the regulatory functions of the intermediate products and their derivatives]. Perumov DA; Glazunov EA; Gorinchuk GF Genetika; 1986 May; 22(5):748-54. PubMed ID: 3089873 [TBL] [Abstract][Full Text] [Related]
49. [Operon of riboflavin biosynthesis in Bacillus subtilis. XV. A study of mutants related to the initial stages of biosynthesis. The origin of the ribityl chain of the riboflavin molecule]. Bresler SE; Gorinchuk GF; Chernik TP; Perumov DA Genetika; 1978; 14(12):2082-90. PubMed ID: 105966 [TBL] [Abstract][Full Text] [Related]
50. Characterization of DegU-dependent expression of bpr in Bacillus subtilis. Tsukahara K; Ogura M FEMS Microbiol Lett; 2008 Mar; 280(1):8-13. PubMed ID: 18194340 [TBL] [Abstract][Full Text] [Related]
51. A 5' stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. Hambraeus G; Karhumaa K; Rutberg B Microbiology (Reading); 2002 Jun; 148(Pt 6):1795-1803. PubMed ID: 12055299 [TBL] [Abstract][Full Text] [Related]
52. RNase P cleaves the adenine riboswitch and stabilizes pbuE mRNA in Bacillus subtilis. Seif E; Altman S RNA; 2008 Jun; 14(6):1237-43. PubMed ID: 18441052 [TBL] [Abstract][Full Text] [Related]
53. [Riboflavin biosynthesis operon of Bacillus subtilis. XIII. Genetic and biochemical study of mutants with regard to intermediate stages of biosynthesis]. Bresler SE; Glazunov EA; Perumov DA; Chernik TP Genetika; 1977; 13(11):2006-16. PubMed ID: 27418 [TBL] [Abstract][Full Text] [Related]
54. Trans-translation is involved in the CcpA-dependent tagging and degradation of TreP in Bacillus subtilis. Ujiie H; Matsutani T; Tomatsu H; Fujihara A; Ushida C; Miwa Y; Fujita Y; Himeno H; Muto A J Biochem; 2009 Jan; 145(1):59-66. PubMed ID: 18977770 [TBL] [Abstract][Full Text] [Related]
55. FlhF, the third signal recognition particle-GTPase of Bacillus subtilis, is dispensable for protein secretion. Zanen G; Antelmann H; Westers H; Hecker M; van Dijl JM; Quax WJ J Bacteriol; 2004 Sep; 186(17):5956-60. PubMed ID: 15317803 [TBL] [Abstract][Full Text] [Related]
56. A dual mode of regulation of flgM by ScoC in Bacillus subtilis. Kodgire P; Rao KK Can J Microbiol; 2009 Aug; 55(8):983-9. PubMed ID: 19898538 [TBL] [Abstract][Full Text] [Related]
57. Structural characterization of ribT from Bacillus subtilis reveals it as a GCN5-related N-acetyltransferase. Srivastava R; Kaur A; Sharma C; Karthikeyan S J Struct Biol; 2018 Apr; 202(1):70-81. PubMed ID: 29241954 [TBL] [Abstract][Full Text] [Related]
58. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon. Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643 [TBL] [Abstract][Full Text] [Related]
59. YjbH is a novel negative effector of the disulphide stress regulator, Spx, in Bacillus subtilis. Larsson JT; Rogstam A; von Wachenfeldt C Mol Microbiol; 2007 Nov; 66(3):669-84. PubMed ID: 17908206 [TBL] [Abstract][Full Text] [Related]
60. Flavokinase and FAD synthetase from Bacillus subtilis specific for reduced flavins. Kearney EB; Goldenberg J; Lipsick J; Perl M J Biol Chem; 1979 Oct; 254(19):9551-7. PubMed ID: 226520 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]