BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17590249)

  • 1. A knowledge-based computer-aided system for closed diaphyseal fracture reduction.
    Koo TK; Mak AF
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):884-93. PubMed ID: 17590249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a new approach for computer-aided long bone fracture reduction using unilateral external fixator.
    Koo TK; Chao EY; Mak AF
    J Biomech; 2006; 39(11):2104-12. PubMed ID: 16051255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer aided method for closed reduction of diaphyseal tibial fracture using projection images: A feasibility study.
    Koo TK; Papuga MO
    Comput Aided Surg; 2009; 14(1-3):45-57. PubMed ID: 20121586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic adjustability of unilateral external fixators for fracture reduction and alignment of axial dynamization.
    Ou YJ
    J Biomech; 2009 Aug; 42(12):1974-80. PubMed ID: 19535080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational simulation of axial dynamization on long bone fractures.
    Liu RW; Kim YH; Lee DC; Inoue N; Koo TK; Chao EY
    Clin Biomech (Bristol, Avon); 2005 Jan; 20(1):83-90. PubMed ID: 15567541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided parachute guiding system for closed reduction of diaphyseal fractures.
    Du D; Liu Z; Omori S; Kurita M; Tomita T; Sugamoto K; Yoshikawa H; Murase T
    Int J Med Robot; 2014 Sep; 10(3):325-31. PubMed ID: 24030893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-assisted fracture reduction: novel method for analysis of accuracy.
    Hüfner T; Pohlemann T; Tarte S; Gänsslen A; Citak M S M; Bazak N; Culemann U; Nolte LP; Krettek C
    Comput Aided Surg; 2001; 6(3):153-9. PubMed ID: 11747133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel 3D hexapod computer-assisted orthopaedic surgery system for closed diaphyseal fracture reduction.
    Tang P; Hu L; Du H; Gong M; Zhang L
    Int J Med Robot; 2012 Mar; 8(1):17-24. PubMed ID: 22081502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hexapod robot external fixator for computer assisted fracture reduction and deformity correction.
    Seide K; Faschingbauer M; Wenzl ME; Weinrich N; Juergens C
    Int J Med Robot; 2004 Jun; 1(1):64-9. PubMed ID: 17520597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomechanical evaluation to optimize the configuration of a hinged external fixator for the primary treatment of severely displaced intraarticular calcaneus fractures with soft tissue damage.
    Besch L; Schmidt I; Mueller M; Daniels-Wredenhagen M; Hilgert RE; Varoga D; Seekamp A
    J Foot Ankle Surg; 2008; 47(1):26-33. PubMed ID: 18156061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of complex tibial fractures in children with the taylor spatial frame.
    Eidelman M; Katzman A
    Orthopedics; 2008 Oct; 31(10):. PubMed ID: 19226013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of knee-spanning external fixation on compartment pressures in the leg.
    Egol KA; Bazzi J; McLaurin TM; Tejwani NC
    J Orthop Trauma; 2008; 22(10):680-5. PubMed ID: 18978542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fixation stiffness of Dynafix unilateral external fixator in neutral and non-neutral configurations.
    Koo TK; Chao EY; Mak AF
    Biomed Mater Eng; 2005; 15(6):433-44. PubMed ID: 16308459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic and functional gait analysis of severely displaced intra-articular calcaneus fractures treated with a hinged external fixator or internal stabilization.
    Besch L; Radke B; Mueller M; Daniels-Wredenhagen M; Varoga D; Hilgert RE; Mathiak G; Oehlert K; Seekamp A
    J Foot Ankle Surg; 2008; 47(1):19-25. PubMed ID: 18156060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer navigation allows for accurate reduction of femoral fractures.
    Weil YA; Gardner MJ; Helfet DL; Pearle AD
    Clin Orthop Relat Res; 2007 Jul; 460():185-91. PubMed ID: 17620812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of external fixation: a review of the literature.
    Moss DP; Tejwani NC
    Bull NYU Hosp Jt Dis; 2007; 65(4):294-9. PubMed ID: 18081548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference marker stability in computer aided orthopedic surgery: a biomechanical study in artificial bone and cadavers.
    Citak M; Board TN; Sun Y; Look V; Krettek C; Hüfner T; Kendoff D
    Technol Health Care; 2007; 15(6):407-14. PubMed ID: 18057564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual 3D planning of acetabular fracture reduction.
    Citak M; Gardner MJ; Kendoff D; Tarte S; Krettek C; Nolte LP; Hüfner T
    J Orthop Res; 2008 Apr; 26(4):547-52. PubMed ID: 17972324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A surgical telemanipulator for femur shaft fracture reduction.
    Westphal R; Winkelbach S; Gösling T; Hüfner T; Faulstich J; Martin P; Krettek C; Wahl FM
    Int J Med Robot; 2006 Sep; 2(3):238-50. PubMed ID: 17520638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.