These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17590287)

  • 1. Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon.
    Takenaka N; Yokoyama S
    Gene; 2007 Sep; 399(1):26-32. PubMed ID: 17590287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution of the cone visual pigments in the pure rod-retina of the nocturnal gecko, Gekko gekko.
    Yokoyama S; Blow NS
    Gene; 2001 Oct; 276(1-2):117-25. PubMed ID: 11591478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic relationships among short wavelength-sensitive opsins of American chameleon (Anolis carolinensis) and other vertebrates.
    Kawamura S; Yokoyama S
    Vision Res; 1996 Sep; 36(18):2797-804. PubMed ID: 8917783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A third, ultraviolet-sensitive, visual pigment in the Tokay gecko (Gekko gekko).
    Loew ER
    Vision Res; 1994 Jun; 34(11):1427-31. PubMed ID: 8023453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
    Yokoyama S; Starmer WT; Takahashi Y; Tada T
    Gene; 2006 Jan; 365():95-103. PubMed ID: 16343816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of visual pigments in geckos.
    Taniguchi Y; Hisatomi O; Yoshida M; Tokunaga F
    FEBS Lett; 1999 Feb; 445(1):36-40. PubMed ID: 10069370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of the red visual pigment gene of the American chameleon (Anolis carolinensis).
    Kawamura S; Yokoyama S
    FEBS Lett; 1993 Jun; 323(3):247-51. PubMed ID: 8500618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.
    Yokoyama S
    J Hered; 2000; 91(3):215-20. PubMed ID: 10833047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis).
    Kawamura S; Yokoyama S
    Vision Res; 1998 Jan; 38(1):37-44. PubMed ID: 9474373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis.
    Takahashi Y; Yokoyama S
    Genetics; 2005 Nov; 171(3):1153-60. PubMed ID: 16079229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular genetics and evolution of red and green color vision in vertebrates.
    Yokoyama S; Radlwimmer FB
    Genetics; 2001 Aug; 158(4):1697-710. PubMed ID: 11545071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and low temperature spectroscopy of gecko visual pigments green and blue.
    Kojima D; Imai H; Okano T; Fukada Y; Crescitelli F; Yoshizawa T; Shichida Y
    Biochemistry; 1995 Jan; 34(3):1096-106. PubMed ID: 7827026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and adaptation of green-sensitive (RH2) pigments in vertebrates.
    Yokoyama S; Jia H
    FEBS Open Bio; 2020 May; 10(5):873-882. PubMed ID: 32189477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paralogous origin of the rhodopsinlike opsin genes in lizards.
    Kawamura S; Yokoyama S
    J Mol Evol; 1995 Jun; 40(6):594-600. PubMed ID: 7643409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolution of color vision of zebra finch.
    Yokoyama S; Blow NS; Radlwimmer FB
    Gene; 2000 Dec; 259(1-2):17-24. PubMed ID: 11163957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.
    Wakakuwa M; Terakita A; Koyanagi M; Stavenga DG; Shichida Y; Arikawa K
    PLoS One; 2010 Nov; 5(11):e15015. PubMed ID: 21124838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular properties of chimerical mutants of gecko blue and bovine rhodopsin.
    Kojima D; Oura T; Hisatomi O; Tokunaga F; Fukada Y; Yoshizawa T; Shichida Y
    Biochemistry; 1996 Feb; 35(8):2625-9. PubMed ID: 8611566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.