These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17591176)

  • 41. Extracting falsifiable predictions from sloppy models.
    Gutenkunst RN; Casey FP; Waterfall JJ; Myers CR; Sethna JP
    Ann N Y Acad Sci; 2007 Dec; 1115():203-11. PubMed ID: 17925353
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A framework for elucidating regulatory networks based on prior information and expression data.
    Gevaert O; Van Vooren S; De Moor B
    Ann N Y Acad Sci; 2007 Dec; 1115():240-8. PubMed ID: 17925352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
    Ling H; Samarasinghe S; Kulasiri D
    Biosystems; 2013 Dec; 114(3):191-205. PubMed ID: 24012741
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational procedures for optimal experimental design in biological systems.
    Balsa-Canto E; Alonso AA; Banga JR
    IET Syst Biol; 2008 Jul; 2(4):163-72. PubMed ID: 18681746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A knowledge based approach for representing and reasoning about signaling networks.
    Baral C; Chancellor K; Tran N; Tran NL; Joy A; Berens M
    Bioinformatics; 2004 Aug; 20 Suppl 1():i15-22. PubMed ID: 15262776
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estimation of kinetic parameters in an S-system equation model for a metabolic reaction system using the Newton-Raphson method.
    Iwata M; Sriyudthsak K; Hirai MY; Shiraishi F
    Math Biosci; 2014 Feb; 248():11-21. PubMed ID: 24291302
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inferring biological networks with output kernel trees.
    Geurts P; Touleimat N; Dutreix M; d'Alché-Buc F
    BMC Bioinformatics; 2007 May; 8 Suppl 2(Suppl 2):S4. PubMed ID: 17493253
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detailed comparison between StochSim and SSA.
    Liu Z; Cao Y
    IET Syst Biol; 2008 Sep; 2(5):334-41. PubMed ID: 19045828
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Properties of sparse penalties on inferring gene regulatory networks from time-course gene expression data.
    Liu LZ; Wu FX; Zhang WJ
    IET Syst Biol; 2015 Feb; 9(1):16-24. PubMed ID: 25569860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of Gene Networks with Time Delayed Regulation Based on Temporal Expression Profiles.
    Kim JR; Choo SM; Choi HS; Cho KH
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1161-8. PubMed ID: 26451827
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks.
    Samant A; Ogunnaike BA; Vlachos DG
    BMC Bioinformatics; 2007 May; 8():175. PubMed ID: 17524148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the use of qualitative reasoning to simulate and identify metabolic pathways.
    King RD; Garrett SM; Coghill GM
    Bioinformatics; 2005 May; 21(9):2017-26. PubMed ID: 15647297
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene regulatory network inference: data integration in dynamic models-a review.
    Hecker M; Lambeck S; Toepfer S; van Someren E; Guthke R
    Biosystems; 2009 Apr; 96(1):86-103. PubMed ID: 19150482
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Creating gene set activity profiles with time-series expression data.
    Knijnenburg TA; Wessels LF; Reinders MJ
    Int J Bioinform Res Appl; 2008; 4(3):306-23. PubMed ID: 18640906
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alternative pathway approach for automating analysis and validation of cell perturbation networks and design of perturbation experiments.
    Gong Y; Zhang Z
    Ann N Y Acad Sci; 2007 Dec; 1115():267-85. PubMed ID: 17925355
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process.
    Opgen-Rhein R; Strimmer K
    BMC Bioinformatics; 2007 May; 8 Suppl 2(Suppl 2):S3. PubMed ID: 17493252
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving protein protein interaction prediction based on phylogenetic information using a least-squares support vector machine.
    Craig RA; Liao L
    Ann N Y Acad Sci; 2007 Dec; 1115():154-67. PubMed ID: 17925357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Learning Petri net models of non-linear gene interactions.
    Mayo M
    Biosystems; 2005 Oct; 82(1):74-82. PubMed ID: 16024165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.