These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17591278)

  • 1. [A novel segment-training algorithm for transmembrane helices prediction].
    Wang M; Li A; Wang X; Feng H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):444-8. PubMed ID: 17591278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined prediction of transmembrane topology and signal peptide of beta-barrel proteins: using a hidden Markov model and genetic algorithms.
    Zou L; Wang Z; Wang Y; Hu F
    Comput Biol Med; 2010 Jul; 40(7):621-8. PubMed ID: 20488436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes.
    Kahsay RY; Gao G; Liao L
    Bioinformatics; 2005 May; 21(9):1853-8. PubMed ID: 15691854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hidden Markov model with molecular mechanics energy-scoring function for transmembrane helix prediction.
    Zheng WJ; Spassov VZ; Yan L; Flook PK; Szalma S
    Comput Biol Chem; 2004 Oct; 28(4):265-74. PubMed ID: 15548453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
    Park Y; Helms V
    Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane helix prediction in proteins using hydrophobicity properties and higher-order statistics.
    Kitsas IK; Hadjileontiadis LJ; Panas SM
    Comput Biol Med; 2008 Aug; 38(8):867-80. PubMed ID: 18586233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hidden Markov Model method, capable of predicting and discriminating beta-barrel outer membrane proteins.
    Bagos PG; Liakopoulos TD; Spyropoulos IC; Hamodrakas SJ
    BMC Bioinformatics; 2004 Mar; 5():29. PubMed ID: 15070403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topology prediction for helical transmembrane proteins at 86% accuracy.
    Rost B; Fariselli P; Casadio R
    Protein Sci; 1996 Aug; 5(8):1704-18. PubMed ID: 8844859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the accuracy of transmembrane protein topology prediction using evolutionary information.
    Jones DT
    Bioinformatics; 2007 Mar; 23(5):538-44. PubMed ID: 17237066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar.
    Viklund H; Elofsson A
    Bioinformatics; 2008 Aug; 24(15):1662-8. PubMed ID: 18474507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined transmembrane topology and signal peptide prediction method.
    Käll L; Krogh A; Sonnhammer EL
    J Mol Biol; 2004 May; 338(5):1027-36. PubMed ID: 15111065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of membrane protein types and subcellular locations.
    Chou KC; Elrod DW
    Proteins; 1999 Jan; 34(1):137-53. PubMed ID: 10336379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SOMPNN: an efficient non-parametric model for predicting transmembrane helices.
    Yu DJ; Shen HB; Yang JY
    Amino Acids; 2012 Jun; 42(6):2195-205. PubMed ID: 21695537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A linear memory algorithm for Baum-Welch training.
    Miklós I; Meyer IM
    BMC Bioinformatics; 2005 Sep; 6():231. PubMed ID: 16171529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space.
    Chou KC
    Proteins; 1995 Apr; 21(4):319-44. PubMed ID: 7567954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of subcellular localization of eukaryotic proteins using position-specific profiles and neural network with weighted inputs.
    Zou L; Wang Z; Huang J
    J Genet Genomics; 2007 Dec; 34(12):1080-7. PubMed ID: 18155620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CoPreTHi: a Web tool which combines transmembrane protein segment prediction methods.
    Promponas VJ; Palaios GA; Pasquier CM; Hamodrakas JS; Hamodrakas SJ
    In Silico Biol; 1999; 1(3):159-62. PubMed ID: 11471236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A consensus algorithm to screen genomes for novel families of transmembrane beta barrel proteins.
    Garrow AG; Westhead DR
    Proteins; 2007 Oct; 69(1):8-18. PubMed ID: 17557332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.