BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 17591721)

  • 1. QM/MM study of catalytic methyl transfer by the N5-glutamine SAM-dependent methyltransferase and its inhibition by the nitrogen analogue of coenzyme.
    Wu R; Cao Z
    J Comput Chem; 2008 Feb; 29(3):350-7. PubMed ID: 17591721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic mechanism and product specificity of rubisco large subunit methyltransferase: QM/MM and MD investigations.
    Zhang X; Bruice TC
    Biochemistry; 2007 May; 46(18):5505-14. PubMed ID: 17429949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantum mechanics/molecular mechanics study of the catalytic mechanism and product specificity of viral histone lysine methyltransferase.
    Zhang X; Bruice TC
    Biochemistry; 2007 Aug; 46(34):9743-51. PubMed ID: 17676763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic mechanism and product specificity of the histone lysine methyltransferase SET7/9: an ab initio QM/MM-FE study with multiple initial structures.
    Hu P; Zhang Y
    J Am Chem Soc; 2006 Feb; 128(4):1272-8. PubMed ID: 16433545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization and comparative phylogenetic analysis of Escherichia coli HemK, a protein (N5)-glutamine methyltransferase.
    Yang Z; Shipman L; Zhang M; Anton BP; Roberts RJ; Cheng X
    J Mol Biol; 2004 Jul; 340(4):695-706. PubMed ID: 15223314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures along the catalytic pathway of PrmC/HemK, an N5-glutamine AdoMet-dependent methyltransferase.
    Schubert HL; Phillips JD; Hill CP
    Biochemistry; 2003 May; 42(19):5592-9. PubMed ID: 12741815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QM/MM (ONIOM) study of glycerol binding and hydrogen abstraction by the coenzyme B12-independent dehydratase.
    Liu Y; Gallo AA; Florián J; Liu YS; Mora S; Xu W
    J Phys Chem B; 2010 Apr; 114(16):5497-502. PubMed ID: 20361776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study.
    Díaz N; Suárez D
    J Phys Chem B; 2008 Jul; 112(28):8412-24. PubMed ID: 18570467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta.
    Bojin MD; Schlick T
    J Phys Chem B; 2007 Sep; 111(38):11244-52. PubMed ID: 17764165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr): protonation state of the ligand and active-site residues.
    Alonso H; Cummins PL; Gready JE
    J Phys Chem B; 2009 Nov; 113(44):14787-96. PubMed ID: 19827815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of the phosphoryl transfer catalyzed by a cyclin-dependent kinase.
    De Vivo M; Cavalli A; Carloni P; Recanatini M
    Chemistry; 2007; 13(30):8437-44. PubMed ID: 17636466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination.
    Nakahigashi K; Kubo N; Narita S; Shimaoka T; Goto S; Oshima T; Mori H; Maeda M; Wada C; Inokuchi H
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1473-8. PubMed ID: 11805295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I.
    Kozmon S; Tvaroska I
    J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Burden Borne by Protein Methyltransferases: Rates and Equilibria of Non-enzymatic Methylation of Amino Acid Side Chains by SAM in Water.
    Lewis CA; Wolfenden R
    Biochemistry; 2021 Mar; 60(11):854-858. PubMed ID: 33667085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping.
    Xiang Y; Warshel A
    J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalyzing racemizations in the absence of a cofactor: the reaction mechanism in proline racemase.
    Rubinstein A; Major DT
    J Am Chem Soc; 2009 Jun; 131(24):8513-21. PubMed ID: 19492806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the methyl transfer in guanidinoacetate methyltransferase.
    Velichkova P; Himo F
    J Phys Chem B; 2006 Jan; 110(1):16-9. PubMed ID: 16471489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward accurate barriers for enzymatic reactions: QM/MM case study on p-hydroxybenzoate hydroxylase.
    Mata RA; Werner HJ; Thiel S; Thiel W
    J Chem Phys; 2008 Jan; 128(2):025104. PubMed ID: 18205479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insights for formation of an organometallic Co-C bond in the methyl transfer reaction catalyzed by methionine synthase.
    Kumar N; Kozlowski PM
    J Phys Chem B; 2013 Dec; 117(50):16044-57. PubMed ID: 24164324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibiotic deactivation by a dizinc beta-lactamase: mechanistic insights from QM/MM and DFT studies.
    Xu D; Guo H; Cui Q
    J Am Chem Soc; 2007 Sep; 129(35):10814-22. PubMed ID: 17691780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.