These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 17591770)
1. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. Egerer M; Giesemann T; Jank T; Satchell KJ; Aktories K J Biol Chem; 2007 Aug; 282(35):25314-21. PubMed ID: 17591770 [TBL] [Abstract][Full Text] [Related]
2. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate. Egerer M; Giesemann T; Herrmann C; Aktories K J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051 [TBL] [Abstract][Full Text] [Related]
3. Autoproteolytic cleavage mediates cytotoxicity of Clostridium difficile toxin A. Kreimeyer I; Euler F; Marckscheffel A; Tatge H; Pich A; Olling A; Schwarz J; Just I; Gerhard R Naunyn Schmiedebergs Arch Pharmacol; 2011 Mar; 383(3):253-62. PubMed ID: 21046073 [TBL] [Abstract][Full Text] [Related]
4. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. Hofmann F; Busch C; Prepens U; Just I; Aktories K J Biol Chem; 1997 Apr; 272(17):11074-8. PubMed ID: 9111001 [TBL] [Abstract][Full Text] [Related]
5. Structural determinants of Clostridium difficile toxin A glucosyltransferase activity. Pruitt RN; Chumbler NM; Rutherford SA; Farrow MA; Friedman DB; Spiller B; Lacy DB J Biol Chem; 2012 Mar; 287(11):8013-20. PubMed ID: 22267739 [TBL] [Abstract][Full Text] [Related]
6. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Jank T; Giesemann T; Aktories K Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138 [TBL] [Abstract][Full Text] [Related]
7. Processing of Clostridium difficile toxins. Giesemann T; Egerer M; Jank T; Aktories K J Med Microbiol; 2008 Jun; 57(Pt 6):690-696. PubMed ID: 18480324 [TBL] [Abstract][Full Text] [Related]
8. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A. Pruitt RN; Chagot B; Cover M; Chazin WJ; Spiller B; Lacy DB J Biol Chem; 2009 Aug; 284(33):21934-21940. PubMed ID: 19553670 [TBL] [Abstract][Full Text] [Related]
9. Use of a neutralizing antibody helps identify structural features critical for binding of Kroh HK; Chandrasekaran R; Rosenthal K; Woods R; Jin X; Ohi MD; Nyborg AC; Rainey GJ; Warrener P; Spiller BW; Lacy DB J Biol Chem; 2017 Sep; 292(35):14401-14412. PubMed ID: 28705932 [No Abstract] [Full Text] [Related]
10. Harnessing the glucosyltransferase activities of Clostridium difficile for functional studies of toxins A and B. Darkoh C; Kaplan HB; Dupont HL J Clin Microbiol; 2011 Aug; 49(8):2933-41. PubMed ID: 21653766 [TBL] [Abstract][Full Text] [Related]
11. Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins. Schirmer J; Aktories K Biochim Biophys Acta; 2004 Jul; 1673(1-2):66-74. PubMed ID: 15238250 [TBL] [Abstract][Full Text] [Related]
13. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B. Dillon ST; Rubin EJ; Yakubovich M; Pothoulakis C; LaMont JT; Feig LA; Gilbert RJ Infect Immun; 1995 Apr; 63(4):1421-6. PubMed ID: 7890404 [TBL] [Abstract][Full Text] [Related]
14. Structural organization of the functional domains of Clostridium difficile toxins A and B. Pruitt RN; Chambers MG; Ng KK; Ohi MD; Lacy DB Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13467-72. PubMed ID: 20624955 [TBL] [Abstract][Full Text] [Related]
15. Cholesterol-dependent pore formation of Clostridium difficile toxin A. Giesemann T; Jank T; Gerhard R; Maier E; Just I; Benz R; Aktories K J Biol Chem; 2006 Apr; 281(16):10808-15. PubMed ID: 16513641 [TBL] [Abstract][Full Text] [Related]
16. A neutralizing antibody that blocks delivery of the enzymatic cargo of Kroh HK; Chandrasekaran R; Zhang Z; Rosenthal K; Woods R; Jin X; Nyborg AC; Rainey GJ; Warrener P; Melnyk RA; Spiller BW; Lacy DB J Biol Chem; 2018 Jan; 293(3):941-952. PubMed ID: 29180448 [No Abstract] [Full Text] [Related]
17. Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins. Savidge TC; Urvil P; Oezguen N; Ali K; Choudhury A; Acharya V; Pinchuk I; Torres AG; English RD; Wiktorowicz JE; Loeffelholz M; Kumar R; Shi L; Nie W; Braun W; Herman B; Hausladen A; Feng H; Stamler JS; Pothoulakis C Nat Med; 2011 Aug; 17(9):1136-41. PubMed ID: 21857653 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Rupnik M; Pabst S; Rupnik M; von Eichel-Streiber C; Urlaub H; Söling HD Microbiology (Reading); 2005 Jan; 151(Pt 1):199-208. PubMed ID: 15632438 [TBL] [Abstract][Full Text] [Related]
19. Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol. Li S; Shi L; Yang Z; Feng H Pathog Dis; 2013 Feb; 67(1):11-8. PubMed ID: 23620115 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of the glucosyltransferase activity of clostridial Rho/Ras-glucosylating toxins by castanospermine. Jank T; Ziegler MO; Schulz GE; Aktories K FEBS Lett; 2008 Jun; 582(15):2277-82. PubMed ID: 18505687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]