BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 17591770)

  • 21. Structure and mode of action of clostridial glucosylating toxins: the ABCD model.
    Jank T; Aktories K
    Trends Microbiol; 2008 May; 16(5):222-9. PubMed ID: 18394902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain.
    Sheahan KL; Cordero CL; Satchell KJ
    EMBO J; 2007 May; 26(10):2552-61. PubMed ID: 17464284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mode of action of the large clostridial cytotoxins.
    Just I; Hofmann F; Aktories K
    Curr Top Microbiol Immunol; 2000; 250():55-83. PubMed ID: 10981357
    [No Abstract]   [Full Text] [Related]  

  • 24. Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue.
    Alvin JW; Lacy DB
    J Struct Biol; 2017 Jun; 198(3):203-209. PubMed ID: 28433497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Super toxins from a super bug: structure and function of Clostridium difficile toxins.
    Davies AH; Roberts AK; Shone CC; Acharya KR
    Biochem J; 2011 Jun; 436(3):517-26. PubMed ID: 21615333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A segment of 97 amino acids within the translocation domain of Clostridium difficile toxin B is essential for toxicity.
    Zhang Y; Shi L; Li S; Yang Z; Standley C; Yang Z; ZhuGe R; Savidge T; Wang X; Feng H
    PLoS One; 2013; 8(3):e58634. PubMed ID: 23484044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins.
    Chen S; Sun C; Wang H; Wang J
    Toxins (Basel); 2015 Dec; 7(12):5254-67. PubMed ID: 26633511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular cloning, overexpression in Escherichia coli, and purification of 6x his-tagged C-terminal domain of Clostridium difficile toxins A and B.
    Letourneur O; Ottone S; Delauzun V; Bastide MC; Foussadier A
    Protein Expr Purif; 2003 Oct; 31(2):276-85. PubMed ID: 14550648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular uptake of Clostridium difficile toxin B. Translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells.
    Pfeifer G; Schirmer J; Leemhuis J; Busch C; Meyer DK; Aktories K; Barth H
    J Biol Chem; 2003 Nov; 278(45):44535-41. PubMed ID: 12941936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins.
    Shen A; Lupardus PJ; Gersch MM; Puri AW; Albrow VE; Garcia KC; Bogyo M
    Nat Struct Mol Biol; 2011 Mar; 18(3):364-71. PubMed ID: 21317893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delineation of the catalytic domain of Clostridium difficile toxin B-10463 to an enzymatically active N-terminal 467 amino acid fragment.
    Wagenknecht-Wiesner A; Weidmann M; Braun V; Leukel P; Moos M; von Eichel-Streiber C
    FEMS Microbiol Lett; 1997 Jul; 152(1):109-16. PubMed ID: 9228777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward a structural understanding of Clostridium difficile toxins A and B.
    Pruitt RN; Lacy DB
    Front Cell Infect Microbiol; 2012; 2():28. PubMed ID: 22919620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins.
    Busch C; Hofmann F; Selzer J; Munro S; Jeckel D; Aktories K
    J Biol Chem; 1998 Jul; 273(31):19566-72. PubMed ID: 9677381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques.
    Zeiser J; Gerhard R; Just I; Pich A
    J Proteome Res; 2013 Apr; 12(4):1604-18. PubMed ID: 23387933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The C-Terminal Domain of Clostridioides difficile TcdC Is Exposed on the Bacterial Cell Surface.
    Oliveira Paiva AM; de Jong L; Friggen AH; Smits WK; Corver J
    J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32868401
    [No Abstract]   [Full Text] [Related]  

  • 36. The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region.
    Faust C; Ye B; Song KP
    Biochem Biophys Res Commun; 1998 Oct; 251(1):100-5. PubMed ID: 9790914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of wild type with recombinant Clostridium difficile toxin A.
    Gerhard R; Burger S; Tatge H; Genth H; Just I; Hofmann F
    Microb Pathog; 2005; 38(2-3):77-83. PubMed ID: 15748809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human alpha-defensins inhibit Clostridium difficile toxin B.
    Giesemann T; Guttenberg G; Aktories K
    Gastroenterology; 2008 Jun; 134(7):2049-58. PubMed ID: 18435932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities.
    Ciesla WP; Bobak DA
    J Biol Chem; 1998 Jun; 273(26):16021-6. PubMed ID: 9632652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The combined repetitive oligopeptides of clostridium difficile toxin A counteract premature cleavage of the glucosyl-transferase domain by stabilizing protein conformation.
    Olling A; Hüls C; Goy S; Müller M; Krooss S; Rudolf I; Tatge H; Gerhard R
    Toxins (Basel); 2014 Jul; 6(7):2162-76. PubMed ID: 25054784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.