BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17592122)

  • 1. Self-vaccination by methamphetamine glycation products chemically links chronic drug abuse and cardiovascular disease.
    Treweek J; Wee S; Koob GF; Dickerson TJ; Janda KD
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11580-4. PubMed ID: 17592122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GZ-11608, a Vesicular Monoamine Transporter-2 Inhibitor, Decreases the Neurochemical and Behavioral Effects of Methamphetamine.
    Lee NR; Zheng G; Leggas M; Janganati V; Nickell JR; Crooks PA; Bardo MT; Dwoskin LP
    J Pharmacol Exp Ther; 2019 Nov; 371(2):526-543. PubMed ID: 31413138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drugs of abuse that mediate advanced glycation end product formation: a chemical link to disease pathology.
    Treweek JB; Dickerson TJ; Janda KD
    Acc Chem Res; 2009 May; 42(5):659-69. PubMed ID: 19275211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion.
    Schwendt M; Rocha A; See RE; Pacchioni AM; McGinty JF; Kalivas PW
    J Pharmacol Exp Ther; 2009 Nov; 331(2):555-62. PubMed ID: 19648469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methamphetamine self-administration causes persistent striatal dopaminergic alterations and mitigates the deficits caused by a subsequent methamphetamine exposure.
    McFadden LM; Hadlock GC; Allen SC; Vieira-Brock PL; Stout KA; Ellis JD; Hoonakker AJ; Andrenyak DM; Nielsen SM; Wilkins DG; Hanson GR; Fleckenstein AE
    J Pharmacol Exp Ther; 2012 Feb; 340(2):295-303. PubMed ID: 22034657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons.
    Sobieraj JC; Kim A; Fannon MJ; Mandyam CD
    Brain Struct Funct; 2016 Jan; 221(1):261-76. PubMed ID: 25273280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunological consequences of methamphetamine protein glycation.
    Dickerson TJ; Yamamoto N; Ruiz DI; Janda KD
    J Am Chem Soc; 2004 Sep; 126(37):11446-7. PubMed ID: 15366884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prior methamphetamine self-administration attenuates the dopaminergic deficits caused by a subsequent methamphetamine exposure.
    McFadden LM; Vieira-Brock PL; Hanson GR; Fleckenstein AE
    Neuropharmacology; 2015 Jun; 93():146-54. PubMed ID: 25645392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse.
    Mata MM; Napier TC; Graves SM; Mahmood F; Raeisi S; Baum LL
    Eur J Pharmacol; 2015 Apr; 752():26-33. PubMed ID: 25678251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurochemical and behavioral comparisons of contingent and non-contingent methamphetamine exposure following binge or yoked long-access self-administration paradigms.
    Schweppe CA; Burzynski C; Jayanthi S; Ladenheim B; Cadet JL; Gardner EL; Xi ZX; van Praag H; Newman AH; Keck TM
    Psychopharmacology (Berl); 2020 Jul; 237(7):1989-2005. PubMed ID: 32388619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrabenazine inhibition of monoamine uptake and methamphetamine behavioral effects: locomotor activity, drug discrimination and self-administration.
    Meyer AC; Horton DB; Neugebauer NM; Wooters TE; Nickell JR; Dwoskin LP; Bardo MT
    Neuropharmacology; 2011 Sep; 61(4):849-56. PubMed ID: 21669212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysregulation of D₂-mediated dopamine transmission in monkeys after chronic escalating methamphetamine exposure.
    Groman SM; Lee B; Seu E; James AS; Feiler K; Mandelkern MA; London ED; Jentsch JD
    J Neurosci; 2012 Apr; 32(17):5843-52. PubMed ID: 22539846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atypical dopamine transporter inhibitors attenuate compulsive-like methamphetamine self-administration in rats.
    Tunstall BJ; Ho CP; Cao J; Vendruscolo JCM; Schmeichel BE; Slack RD; Tanda G; Gadiano AJ; Rais R; Slusher BS; Koob GF; Newman AH; Vendruscolo LF
    Neuropharmacology; 2018 Mar; 131():96-103. PubMed ID: 29217282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat.
    Cadet JL; Brannock C; Jayanthi S; Krasnova IN
    Mol Neurobiol; 2015 Apr; 51(2):696-717. PubMed ID: 24939695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity.
    Nakajima A; Yamada K; Nagai T; Uchiyama T; Miyamoto Y; Mamiya T; He J; Nitta A; Mizuno M; Tran MH; Seto A; Yoshimura M; Kitaichi K; Hasegawa T; Saito K; Yamada Y; Seishima M; Sekikawa K; Kim HC; Nabeshima T
    J Neurosci; 2004 Mar; 24(9):2212-25. PubMed ID: 14999072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat.
    Krasnova IN; Justinova Z; Ladenheim B; Jayanthi S; McCoy MT; Barnes C; Warner JE; Goldberg SR; Cadet JL
    PLoS One; 2010 Jan; 5(1):e8790. PubMed ID: 20098750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High levels of intravenous mephedrone (4-methylmethcathinone) self-administration in rats: neural consequences and comparison with methamphetamine.
    Motbey CP; Clemens KJ; Apetz N; Winstock AR; Ramsey J; Li KM; Wyatt N; Callaghan PD; Bowen MT; Cornish JL; McGregor IS
    J Psychopharmacol; 2013 Sep; 27(9):823-36. PubMed ID: 23739178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity.
    Truong JG; Wilkins DG; Baudys J; Crouch DJ; Johnson-Davis KL; Gibb JW; Hanson GR; Fleckenstein AE
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1087-92. PubMed ID: 15901804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. meso-Transdiene analogs inhibit vesicular monoamine transporter-2 function and methamphetamine-evoked dopamine release.
    Horton DB; Siripurapu KB; Norrholm SD; Culver JP; Hojahmat M; Beckmann JS; Harrod SB; Deaciuc AG; Bardo MT; Crooks PA; Dwoskin LP
    J Pharmacol Exp Ther; 2011 Mar; 336(3):940-51. PubMed ID: 21177475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histamine h3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release.
    Munzar P; Tanda G; Justinova Z; Goldberg SR
    Neuropsychopharmacology; 2004 Apr; 29(4):705-17. PubMed ID: 14735131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.