These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. Simsek M; Quezada-Calvillo R; Ferruzzi MG; Nichols BL; Hamaker BR J Agric Food Chem; 2015 Apr; 63(15):3873-9. PubMed ID: 25816913 [TBL] [Abstract][Full Text] [Related]
9. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). Ao Z; Quezada-Calvillo R; Sim L; Nichols BL; Rose DR; Sterchi EE; Hamaker BR FEBS Lett; 2007 May; 581(13):2381-8. PubMed ID: 17485087 [TBL] [Abstract][Full Text] [Related]
10. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Lee BH; Lin AH; Nichols BL; Jones K; Rose DR; Quezada-Calvillo R; Hamaker BR Mol Nutr Food Res; 2014 May; 58(5):1111-21. PubMed ID: 24442968 [TBL] [Abstract][Full Text] [Related]
11. Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal α-glucosidase subunit. Lin AH; Nichols BL; Quezada-Calvillo R; Avery SE; Sim L; Rose DR; Naim HY; Hamaker BR PLoS One; 2012; 7(5):e35473. PubMed ID: 22563462 [TBL] [Abstract][Full Text] [Related]
12. Conditioning with slowly digestible starch diets in mice reduces jejunal α-glucosidase activity and glucogenesis from a digestible starch feeding. Hasek LY; Avery SE; Chacko SK; Fraley JK; Vohra FA; Quezada-Calvillo R; Nichols BL; Hamaker BR Nutrition; 2020 Oct; 78():110857. PubMed ID: 32599415 [TBL] [Abstract][Full Text] [Related]
13. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal α-glucosidases. Lee BH; Eskandari R; Jones K; Reddy KR; Quezada-Calvillo R; Nichols BL; Rose DR; Hamaker BR; Pinto BM J Biol Chem; 2012 Sep; 287(38):31929-38. PubMed ID: 22851177 [TBL] [Abstract][Full Text] [Related]
14. Modeling of cooked starch digestion process using recombinant human pancreatic α-amylase and maltase-glucoamylase for in vitro evaluation of α-glucosidase inhibitors. Cao X; Zhang C; Dong Y; Geng P; Bai F; Bai G Carbohydr Res; 2015 Sep; 414():15-21. PubMed ID: 26162745 [TBL] [Abstract][Full Text] [Related]
15. Fermentation in the small intestine contributes substantially to intestinal starch disappearance in calves. Gilbert MS; Pantophlet AJ; Berends H; Pluschke AM; van den Borne JJ; Hendriks WH; Schols HA; Gerrits WJ J Nutr; 2015 Jun; 145(6):1147-55. PubMed ID: 25878206 [TBL] [Abstract][Full Text] [Related]
16. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes. Chegeni M; Amiri M; Nichols BL; Naim HY; Hamaker BR FASEB J; 2018 Jul; 32(7):3903-3911. PubMed ID: 29465310 [TBL] [Abstract][Full Text] [Related]
18. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents. Mohan S; Eskandari R; Pinto BM Acc Chem Res; 2014 Jan; 47(1):211-25. PubMed ID: 23964564 [TBL] [Abstract][Full Text] [Related]
19. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase. Jones K; Sim L; Mohan S; Kumarasamy J; Liu H; Avery S; Naim HY; Quezada-Calvillo R; Nichols BL; Pinto BM; Rose DR Bioorg Med Chem; 2011 Jul; 19(13):3929-34. PubMed ID: 21669536 [TBL] [Abstract][Full Text] [Related]
20. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis. Dhital S; Lin AH; Hamaker BR; Gidley MJ; Muniandy A PLoS One; 2013; 8(4):e62546. PubMed ID: 23638112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]