BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 17593218)

  • 1. From neuroanatomy to gene therapy: searching for new ways to manipulate the supraspinal endogenous pain modulatory system.
    Tavares I; Lima D
    J Anat; 2007 Aug; 211(2):261-8. PubMed ID: 17593218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The medullary dorsal reticular nucleus as a pronociceptive centre of the pain control system.
    Lima D; Almeida A
    Prog Neurobiol; 2002 Feb; 66(2):81-108. PubMed ID: 11900883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of nociceptive responses of spinal cord neurones during hypertension involves the spinal GABAergic system and a pain modulatory center located at the caudal ventrolateral medulla.
    Morato M; Pinho D; Sousa T; Tavares I; Albino-Teixeira A
    J Neurosci Res; 2006 Mar; 83(4):647-55. PubMed ID: 16453312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Descending projections from the caudal medulla oblongata to the superficial or deep dorsal horn of the rat spinal cord.
    Tavares I; Lima D
    Exp Brain Res; 1994; 99(3):455-63. PubMed ID: 7957725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain projections from the medullary dorsal reticular nucleus: an anterograde and retrograde tracing study in the rat.
    Leite-Almeida H; Valle-Fernandes A; Almeida A
    Neuroscience; 2006 Jun; 140(2):577-95. PubMed ID: 16563637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spino-latero-reticular system of the rat: projections from the superficial dorsal horn and structural characterization of marginal neurons involved.
    Lima D; Mendes-Ribeiro JA; Coimbra A
    Neuroscience; 1991; 45(1):137-52. PubMed ID: 1721691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of noxious evoked c-fos expression in areas of the somatosensory system during chronic pain: involvement of spino-medullary and intra-medullary connections.
    Pinto M; Lima D; Tavares I
    Neurosci Lett; 2006 Dec; 409(2):100-5. PubMed ID: 17052848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 5-HT
    Lyubashina OA; Sivachenko IB
    Neuroscience; 2017 Sep; 359():277-288. PubMed ID: 28754313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The caudal ventrolateral medulla as an important inhibitory modulator of pain transmission in the spinal cord.
    Tavares I; Lima D
    J Pain; 2002 Oct; 3(5):337-46. PubMed ID: 14622734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons.
    Budai D; Fields HL
    J Neurophysiol; 1998 Feb; 79(2):677-87. PubMed ID: 9463431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls.
    Villanueva L; Le Bars D
    Biol Res; 1995; 28(1):113-25. PubMed ID: 8728826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of mu-opioid, GABA(B), and NK1 receptors of major pain control medullary areas in pathways targeting the rat spinal cord: implications for descending modulation of nociceptive transmission.
    Pinto M; Sousa M; Lima D; Tavares I
    J Comp Neurol; 2008 Sep; 510(2):175-87. PubMed ID: 18615498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reticular Formation and Pain: The Past and the Future.
    Martins I; Tavares I
    Front Neuroanat; 2017; 11():51. PubMed ID: 28725185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of NK1 and GABAB receptors in spinal neurones projecting to antinociceptive or pronociceptive medullary centres.
    Castro AR; Morgado C; Lima D; Tavares I
    Brain Res Bull; 2006 Apr; 69(3):266-75. PubMed ID: 16564421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effects evoked from the rostral ventrolateral medulla are selective for the nociceptive responses of spinal dorsal horn neurons.
    Hudson PM; Semenenko FM; Lumb BM
    Neuroscience; 2000; 99(3):541-7. PubMed ID: 11029545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The caudal medullary ventrolateral reticular formation in nociceptive-cardiovascular integration. An experimental study in the rat.
    Lima D; Albino-Teixeira A; Tavares I
    Exp Physiol; 2002 Mar; 87(2):267-74. PubMed ID: 11856973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal activation at the spinal cord and medullary pain control centers after joint stimulation: a c-fos study in acute and chronic articular inflammation.
    Pinto M; Lima D; Tavares I
    Neuroscience; 2007 Jul; 147(4):1076-89. PubMed ID: 17590519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurons in the rat medulla oblongata containing neuropeptide Y-, angiotensin II-, or galanin-like immunoreactivity project to the parabrachial nucleus.
    Krukoff TL; Vu T; Harris KH; Aippersbach S; Jhamandas JH
    Neuroscience; 1992; 47(1):175-84. PubMed ID: 1374537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of glutamate decarboxylase-containing neurons in rabbit medulla oblongata with attention to intramedullary and spinal projections.
    Blessing WW
    Neuroscience; 1990; 37(1):171-85. PubMed ID: 2243591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurons in the caudal ventrolateral medulla mediate descending pain control.
    Gu X; Zhang YZ; O'Malley JJ; De Preter CC; Penzo M; Hoon MA
    Nat Neurosci; 2023 Apr; 26(4):594-605. PubMed ID: 36894654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.