These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17593940)

  • 41. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36.
    Deans MR; Gibson JR; Sellitto C; Connors BW; Paul DL
    Neuron; 2001 Aug; 31(3):477-85. PubMed ID: 11516403
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pre- and postsynaptic excitation and inhibition at octopus optic lobe photoreceptor terminals; implications for the function of the 'presynaptic bags'.
    Piscopo S; Moccia F; Di Cristo C; Caputi L; Di Cosmo A; Brown ER
    Eur J Neurosci; 2007 Oct; 26(8):2196-203. PubMed ID: 17953617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Layer-specific generation and propagation of seizures in slices of developing neocortex: role of excitatory GABAergic synapses.
    Rheims S; Represa A; Ben-Ari Y; Zilberter Y
    J Neurophysiol; 2008 Aug; 100(2):620-8. PubMed ID: 18497363
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamics of glutamatergic synapses in the medial vestibular nucleus of the mouse.
    Broussard DM
    Eur J Neurosci; 2009 Feb; 29(3):502-17. PubMed ID: 19175402
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cognitive impairment and transmitter-specific pre- and postsynaptic changes in the rat cerebral cortex during ageing.
    Majdi M; Ribeiro-da-Silva A; Cuello AC
    Eur J Neurosci; 2007 Dec; 26(12):3583-96. PubMed ID: 18088281
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Presynaptic and postsynaptic modulation of glutamatergic synaptic transmission by activation of alpha(1)- and beta-adrenoceptors in layer V pyramidal neurons of rat cerebral cortex.
    Kobayashi M; Kojima M; Koyanagi Y; Adachi K; Imamura K; Koshikawa N
    Synapse; 2009 Apr; 63(4):269-81. PubMed ID: 19116948
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microstructure of the neocortex: comparative aspects.
    DeFelipe J; Alonso-Nanclares L; Arellano JI
    J Neurocytol; 2002; 31(3-5):299-316. PubMed ID: 12815249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex.
    Berger TK; Perin R; Silberberg G; Markram H
    J Physiol; 2009 Nov; 587(Pt 22):5411-25. PubMed ID: 19770187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Migratory response of interneurons to different regions of the developing neocortex.
    Britto JM; Obata K; Yanagawa Y; Tan SS
    Cereb Cortex; 2006 Jul; 16 Suppl 1():i57-63. PubMed ID: 16766708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Developmental downregulation of GABAergic drive parallels formation of functional synapses in cultured mouse neocortical networks.
    Klueva J; Meis S; de Lima AD; Voigt T; Munsch T
    Dev Neurobiol; 2008 Jun; 68(7):934-49. PubMed ID: 18361402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stress and anxiety in schizophrenia and depression: glucocorticoids, corticotropin-releasing hormone and synapse regression.
    Bennett A O MR
    Aust N Z J Psychiatry; 2008 Dec; 42(12):995-1002. PubMed ID: 19016087
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-photon photostimulation and imaging of neural circuits.
    Nikolenko V; Poskanzer KE; Yuste R
    Nat Methods; 2007 Nov; 4(11):943-50. PubMed ID: 17965719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanisms of firing patterns in fast-spiking cortical interneurons.
    Golomb D; Donner K; Shacham L; Shlosberg D; Amitai Y; Hansel D
    PLoS Comput Biol; 2007 Aug; 3(8):e156. PubMed ID: 17696606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human-Specific Cortical Synaptic Connections and Their Plasticity: Is That What Makes Us Human?
    Lourenço J; Bacci A
    PLoS Biol; 2017 Jan; 15(1):e2001378. PubMed ID: 28103228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative properties of excitatory and inhibitory inter-laminar neocortical axons.
    Shlosberg D; Abu-Ghanem Y; Amitai Y
    Neuroscience; 2008 Aug; 155(2):366-73. PubMed ID: 18586074
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship between GABAergic interneurons migration and early neocortical network activity.
    de Lima AD; Gieseler A; Voigt T
    Dev Neurobiol; 2009 Feb 1-15; 69(2-3):105-23. PubMed ID: 19086030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The impact of chronic network hyperexcitability on developing glutamatergic synapses.
    Swann JW; Le JT; Lam TT; Owens J; Mayer AT
    Eur J Neurosci; 2007 Aug; 26(4):975-91. PubMed ID: 17714191
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus.
    Lushnikova I; Skibo G; Muller D; Nikonenko I
    Hippocampus; 2009 Aug; 19(8):753-62. PubMed ID: 19156853
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A piece of the neocortical puzzle: the pyramid-Martinotti cell reciprocating principle.
    Buchanan KA; Sjöström PJ
    J Physiol; 2009 Nov; 587(Pt 22):5301-2. PubMed ID: 19915212
    [No Abstract]   [Full Text] [Related]  

  • 60. Plastic rearrangements of the ultrastructure of the hippocampus in organotypic tissue cultures.
    Frumkina LE; Khaspekov LG; Lyzhin AA; Viktorov IV
    Neurosci Behav Physiol; 2002; 32(4):335-9. PubMed ID: 12243253
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.