BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 17593947)

  • 1. Comparative evaluation of absorbed dose estimates derived from passive dosimetry measurements to those derived from biological monitoring: validation of exposure monitoring methodologies.
    Ross J; Chester G; Driver J; Lunchick C; Holden L; Rosenheck L; Barnekow D
    J Expo Sci Environ Epidemiol; 2008 Mar; 18(2):211-30. PubMed ID: 17593947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of passive dosimetry and biomonitoring for assessing chlorpyrifos exposure in pesticide workers.
    Geer LA; Cardello N; Dellarco MJ; Leighton TJ; Zendzian RP; Roberts JD; Buckley TJ
    Ann Occup Hyg; 2004 Nov; 48(8):683-95. PubMed ID: 15516344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and application of quantitative methods for monitoring dermal and inhalation exposure to propiconazole.
    Flack S; Goktepe I; Ball LM; Nylander-French LA
    J Environ Monit; 2008 Mar; 10(3):336-44. PubMed ID: 18392276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomonitoring as a tool in the human health risk characterization of dermal exposure.
    Boogaard PJ
    Hum Exp Toxicol; 2008 Apr; 27(4):297-305. PubMed ID: 18684800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of pesticide exposure in the agricultural population of Costa Rica.
    Monge P; Partanen T; Wesseling C; Bravo V; Ruepert C; Burstyn I
    Ann Occup Hyg; 2005 Jul; 49(5):375-84. PubMed ID: 15650018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomonitoring for occupational health risk assessment (BOHRA).
    Manno M; Viau C; ; Cocker J; Colosio C; Lowry L; Mutti A; Nordberg M; Wang S
    Toxicol Lett; 2010 Jan; 192(1):3-16. PubMed ID: 19446015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonpersistent pesticide exposure self-report versus biomonitoring in farm pesticide applicators.
    Perry MJ; Marbella A; Layde PM
    Ann Epidemiol; 2006 Sep; 16(9):701-7. PubMed ID: 16616517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human biomonitoring: state of the art.
    Angerer J; Ewers U; Wilhelm M
    Int J Hyg Environ Health; 2007 May; 210(3-4):201-28. PubMed ID: 17376741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of measured dermal dust exposures with predicted exposures given by the EASE expert system.
    Hughson GW; Cherrie JW
    Ann Occup Hyg; 2005 Mar; 49(2):111-23. PubMed ID: 15734824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of patches and whole body sampling for the assessment of dermal exposure.
    Soutar A; Semple S; Aitken RJ; Robertson A
    Ann Occup Hyg; 2000 Oct; 44(7):511-8. PubMed ID: 11042252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derivation of single layer clothing penetration factors from the pesticide handlers exposure database.
    Driver J; Ross J; Mihlan G; Lunchick C; Landenberger B
    Regul Toxicol Pharmacol; 2007 Nov; 49(2):125-37. PubMed ID: 17822819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictors of herbicide exposure in farm applicators.
    Arbuckle TE; Burnett R; Cole D; Teschke K; Dosemeci M; Bancej C; Zhang J
    Int Arch Occup Environ Health; 2002 Aug; 75(6):406-14. PubMed ID: 12070637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of predictive model to estimate concentrations of chemical substances in the work environment].
    Kupczewska-Dobecka M; Czerczak S; Jakubowski M; Maciaszek P; Janasik B
    Med Pr; 2010; 61(3):307-14. PubMed ID: 20677430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Default values for assessment of potential dermal exposure of the hands to industrial chemicals in the scope of regulatory risk assessments.
    Marquart H; Warren ND; Laitinen J; van Hemmen JJ
    Ann Occup Hyg; 2006 Jul; 50(5):469-89. PubMed ID: 16540540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene.
    Liao KH; Tan YM; Clewell HJ
    Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability of task-based dermal exposure measurements from a variety of workplaces.
    Kromhout H; Fransman W; Vermeulen R; Roff M; van Hemmen JJ
    Ann Occup Hyg; 2004 Apr; 48(3):187-96. PubMed ID: 15059794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of dermal absorption using the exponential saturation model.
    Thongsinthusak T; Ross JH; Saiz SG; Krieger RI
    Regul Toxicol Pharmacol; 1999 Feb; 29(1):37-43. PubMed ID: 10051417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing workplace chemical exposures: the role of exposure monitoring.
    Harper M
    J Environ Monit; 2004 May; 6(5):404-12. PubMed ID: 15152307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of exposure in epidemiological studies: the example of silica dust.
    Dahmann D; Taeger D; Kappler M; Büchte S; Morfeld P; Brüning T; Pesch B
    J Expo Sci Environ Epidemiol; 2008 Sep; 18(5):452-61. PubMed ID: 18059424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.