BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17593963)

  • 1. Indeterminacy of reverse engineering of Gene Regulatory Networks: the curse of gene elasticity.
    Krishnan A; Giuliani A; Tomita M
    PLoS One; 2007 Jun; 2(6):e562. PubMed ID: 17593963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient reverse-engineering of a developmental gene regulatory network.
    Crombach A; Wotton KR; Cicin-Sain D; Ashyraliyev M; Jaeger J
    PLoS Comput Biol; 2012; 8(7):e1002589. PubMed ID: 22807664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating realistic in silico gene networks for performance assessment of reverse engineering methods.
    Marbach D; Schaffter T; Mattiussi C; Floreano D
    J Comput Biol; 2009 Feb; 16(2):229-39. PubMed ID: 19183003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of dynamic spatial GRN models with multi-GPU evolutionary computation.
    Mousavi R; Konuru SH; Lobo D
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.
    Khan A; Saha G; Pal RK
    J Theor Biol; 2018 May; 445():9-30. PubMed ID: 29462626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic synchronization of isolated network elements facilitates simulating and inferring gene regulatory networks including stochastic molecular kinetics.
    Hettich J; Gebhardt JCM
    BMC Bioinformatics; 2022 Jan; 23(1):13. PubMed ID: 34986805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient data assimilation schema for restoration and extension of gene regulatory networks using time-course observation data.
    Hasegawa T; Mori T; Yamaguchi R; Imoto S; Miyano S; Akutsu T
    J Comput Biol; 2014 Nov; 21(11):785-98. PubMed ID: 25244077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse engineering of dynamic networks.
    Stigler B; Jarrah A; Stillman M; Laubenbacher R
    Ann N Y Acad Sci; 2007 Dec; 1115():168-77. PubMed ID: 17925347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development.
    Vermeirssen V; Joshi A; Michoel T; Bonnet E; Casneuf T; Van de Peer Y
    Mol Biosyst; 2009 Dec; 5(12):1817-30. PubMed ID: 19763340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of gene regulatory networks from time series by Tsallis entropy.
    Lopes FM; de Oliveira EA; Cesar RM
    BMC Syst Biol; 2011 May; 5():61. PubMed ID: 21545720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks.
    Kim CS
    BMC Bioinformatics; 2007 Jul; 8():251. PubMed ID: 17626641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing directed gene regulatory network by only gene expression data.
    Zhang L; Feng XK; Ng YK; Li SC
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):430. PubMed ID: 27556418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large scale gene regulatory network inference with a multi-level strategy.
    Wu J; Zhao X; Lin Z; Shao Z
    Mol Biosyst; 2016 Feb; 12(2):588-97. PubMed ID: 26687446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.
    Noor A; Serpedin E; Nounou M; Nounou HN
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1203-11. PubMed ID: 22350207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.
    Xiao X; Zhang W; Zou X
    PLoS One; 2015; 10(3):e0119294. PubMed ID: 25807392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path2enet: generation of human pathway-derived networks in an expression specific context.
    Droste C; De Las Rivas J
    BMC Genomics; 2016 Oct; 17(Suppl 8):731. PubMed ID: 27801297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.