BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 17593967)

  • 1. Expression, processing, and localization of PmpD of Chlamydia trachomatis Serovar L2 during the chlamydial developmental cycle.
    Kiselev AO; Stamm WE; Yates JR; Lampe MF
    PLoS One; 2007 Jun; 2(6):e568. PubMed ID: 17593967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of pmpD expression and PmpD post-translational processing during the life cycle of Chlamydia trachomatis serovars A, D, and L2.
    Kiselev AO; Skinner MC; Lampe MF
    PLoS One; 2009; 4(4):e5191. PubMed ID: 19367336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing of Chlamydia abortus polymorphic membrane protein 18D during the chlamydial developmental cycle.
    Wheelhouse NM; Sait M; Aitchison K; Livingstone M; Wright F; McLean K; Inglis NF; Smith DG; Longbottom D
    PLoS One; 2012; 7(11):e49190. PubMed ID: 23145118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia trachomatis polymorphic membrane protein D is a virulence factor involved in early host-cell interactions.
    Kari L; Southern TR; Downey CJ; Watkins HS; Randall LB; Taylor LD; Sturdevant GL; Whitmire WM; Caldwell HD
    Infect Immun; 2014 Jul; 82(7):2756-62. PubMed ID: 24733093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of groEL-1, incB, pyk-F, tal, hctA and omcB genes during Chlamydia trachomatis developmental cycle.
    Mzobe GF; Ngcapu S; Joubert BC; Sturm WA
    PLoS One; 2021; 16(4):e0249358. PubMed ID: 33857160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle.
    Shaw EI; Dooley CA; Fischer ER; Scidmore MA; Fields KA; Hackstadt T
    Mol Microbiol; 2000 Aug; 37(4):913-25. PubMed ID: 10972811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins.
    Scidmore-Carlson MA; Shaw EI; Dooley CA; Fischer ER; Hackstadt T
    Mol Microbiol; 1999 Aug; 33(4):753-65. PubMed ID: 10447885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection.
    Gérard HC; Krausse-Opatz B; Wang Z; Rudy D; Rao JP; Zeidler H; Schumacher HR; Whittum-Hudson JA; Köhler L; Hudson AP
    Mol Microbiol; 2001 Aug; 41(3):731-41. PubMed ID: 11532140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization and characterization of the hypothetical protein CT440 in Chlamydia trachomatis-infected cells.
    Li Z; Huang Q; Su S; Zhou Z; Chen C; Zhong G; Wu Y
    Sci China Life Sci; 2011 Nov; 54(11):1048-54. PubMed ID: 22173312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism.
    Fields KA; Hackstadt T
    Mol Microbiol; 2000 Dec; 38(5):1048-60. PubMed ID: 11123678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Chlamydia trachomatis PmpD adhesin forms higher order structures through disulphide-mediated covalent interactions.
    Paes W; Dowle A; Coldwell J; Leech A; Ganderton T; Brzozowski A
    PLoS One; 2018; 13(6):e0198662. PubMed ID: 29912892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From the inside out--processing of the Chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells.
    Wehrl W; Brinkmann V; Jungblut PR; Meyer TF; Szczepek AJ
    Mol Microbiol; 2004 Jan; 51(2):319-34. PubMed ID: 14756775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure.
    Swanson KA; Taylor LD; Frank SD; Sturdevant GL; Fischer ER; Carlson JH; Whitmire WM; Caldwell HD
    Infect Immun; 2009 Jan; 77(1):508-16. PubMed ID: 19001072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of two novel proteins in Chlamydia trachomatis during natural infection.
    Myers GS; Grinvalds R; Booth S; Hutton SI; Binks M; Kemp DJ; Sriprakash KS
    Microb Pathog; 2000 Aug; 29(2):63-72. PubMed ID: 10906261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial Characterization of the Two ClpP Paralogs of
    Wood NA; Chung KY; Blocker AM; Rodrigues de Almeida N; Conda-Sheridan M; Fisher DJ; Ouellette SP
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and evaluation of a combination of chlamydial antigens to support the diagnosis of severe and invasive Chlamydia trachomatis infections.
    Forsbach-Birk V; Simnacher U; Pfrepper KI; Soutschek E; Kiselev AO; Lampe MF; Meyer T; Straube E; Essig A
    Clin Microbiol Infect; 2010 Aug; 16(8):1237-44. PubMed ID: 19723133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance.
    McCoy AJ; Sandlin RC; Maurelli AT
    J Bacteriol; 2003 Feb; 185(4):1218-28. PubMed ID: 12562791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Growth of
    Nogueira AT; Braun KM; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():438. PubMed ID: 29067282
    [No Abstract]   [Full Text] [Related]  

  • 20. Expression of a plasmid gene of Chlamydia trachomatis encoding a novel 28 kDa antigen.
    Comanducci M; Cevenini R; Moroni A; Giuliani MM; Ricci S; Scarlato V; Ratti G
    J Gen Microbiol; 1993 May; 139(5):1083-92. PubMed ID: 8336105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.