These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 17594001)

  • 1. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.
    Kim T; Hwang JS; Kwon S
    Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steam reforming of biodiesel by-product to make renewable hydrogen.
    Slinn M; Kendall K; Mallon C; Andrews J
    Bioresour Technol; 2008 Sep; 99(13):5851-8. PubMed ID: 18032034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces.
    Lim KH; Chen ZX; Neyman KM; Rösch N
    J Phys Chem B; 2006 Aug; 110(30):14890-7. PubMed ID: 16869600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.
    Zhang S; Zhang Y; Chen J; Zhang X; Liu X
    PLoS One; 2017; 12(11):e0187802. PubMed ID: 29121067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel microfibrous composite bed reactor: high efficiency H2 production from NH3 with potential for portable fuel cell power supplies.
    Lu Y; Wang H; Liu Y; Xue Q; Chen L; He M
    Lab Chip; 2007 Jan; 7(1):133-40. PubMed ID: 17180216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel reforming method for hydrogen production from biomass steam gasification.
    Gao N; Li A; Quan C
    Bioresour Technol; 2009 Sep; 100(18):4271-7. PubMed ID: 19395255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst.
    Wu HS; Chung SC
    J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcalorimetric and infrared studies of ethanol and acetaldehyde adsorption to investigate the ethanol steam reforming on supported cobalt catalysts.
    Guil JM; Homs N; Llorca J; Ramírez de la Piscina P
    J Phys Chem B; 2005 Jun; 109(21):10813-9. PubMed ID: 16852315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.
    Sanchez-Sanchez MC; Navarro Yerga RM; Kondarides DI; Verykios XE; Fierro JL
    J Phys Chem A; 2010 Mar; 114(11):3873-82. PubMed ID: 19824680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen production from the steam reforming of bio-butanol over novel supported Co-based bimetallic catalysts.
    Cai W; de la Piscina PR; Homs N
    Bioresour Technol; 2012 Mar; 107():482-6. PubMed ID: 22244952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling ZnO morphology for improved methanol steam reforming reactivity.
    Karim AM; Conant T; Datye AK
    Phys Chem Chem Phys; 2008 Sep; 10(36):5584-90. PubMed ID: 18956093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standalone ethanol micro-reformer integrated on silicon technology for onboard production of hydrogen-rich gas.
    Pla D; Salleras M; Morata A; Garbayo I; Gerbolés M; Sabaté N; Divins NJ; Casanovas A; Llorca J; Tarancón A
    Lab Chip; 2016 Aug; 16(15):2900-10. PubMed ID: 27378399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.
    Lee CY; Lee SJ; Shen CC; Yeh CT; Chang CC; Lo YM
    Sensors (Basel); 2011; 11(2):2246-56. PubMed ID: 22319407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic performance of plate-type Cu/Fe nanocomposites on ZnO nanorods for oxidative steam reforming of methanol.
    Li CC; Lin RJ; Lin HP; Lin YK; Lin YG; Chang CC; Chen LC; Chen KH
    Chem Commun (Camb); 2011 Feb; 47(5):1473-5. PubMed ID: 21085741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures.
    Rico VJ; Hueso JL; Cotrino J; Gallardo V; Sarmiento B; Brey JJ; González-Elipe AR
    Chem Commun (Camb); 2009 Nov; (41):6192-4. PubMed ID: 19826665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steam reforming of crude glycerol with in situ CO(2) sorption.
    Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and operation performance of the plate-heat transfer type hydrogen production reactor for bio-methanol reforming.
    Liu H; Li Y; Lu C; Zhang Z; Xiang G; Yang X; Zhang Q
    Bioresour Technol; 2023 Oct; 386():129509. PubMed ID: 37473786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.