BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17594013)

  • 1. Integration of functional myotubes with a Bio-MEMS device for non-invasive interrogation.
    Wilson K; Molnar P; Hickman J
    Lab Chip; 2007 Jul; 7(7):920-2. PubMed ID: 17594013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures.
    Das M; Gregory CA; Molnar P; Riedel LM; Wilson K; Hickman JJ
    Biomaterials; 2006 Aug; 27(24):4374-80. PubMed ID: 16647113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ sensing and manipulation of molecules in biological samples using a nanorobotic system.
    Li G; Xi N; Wang DH
    Nanomedicine; 2005 Mar; 1(1):31-40. PubMed ID: 17292055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of bio-MEMS surface chemical properties in micro fluidic devices for biological applications.
    Dhayal M; So C; Choi JS; Jun J
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3494-8. PubMed ID: 17252797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of skeletal muscle and integration of myotubes with silicon microstructures using serum-free medium and a synthetic silane substrate.
    Das M; Wilson K; Molnar P; Hickman JJ
    Nat Protoc; 2007; 2(7):1795-801. PubMed ID: 17641647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness.
    Kaji H; Ishibashi T; Nagamine K; Kanzaki M; Nishizawa M
    Biomaterials; 2010 Sep; 31(27):6981-6. PubMed ID: 20561677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement.
    Wilson K; Das M; Wahl KJ; Colton RJ; Hickman J
    PLoS One; 2010 Jun; 5(6):e11042. PubMed ID: 20548775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate.
    Cimetta E; Pizzato S; Bollini S; Serena E; De Coppi P; Elvassore N
    Biomed Microdevices; 2009 Apr; 11(2):389-400. PubMed ID: 18987976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors.
    Sharma S; Johnson RW; Desai TA
    Biosens Bioelectron; 2004 Sep; 20(2):227-39. PubMed ID: 15308226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-sensitive detection of bacterial toxin with silicon nanowire transistor.
    Mishra NN; Maki WC; Cameron E; Nelson R; Winterrowd P; Rastogi SK; Filanoski B; Maki GK
    Lab Chip; 2008 Jun; 8(6):868-71. PubMed ID: 18497904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel dry method for surface modification of SU-8 for immobilization of biomolecules in Bio-MEMS.
    Joshi M; Kale N; Lal R; Ramgopal Rao V; Mukherji S
    Biosens Bioelectron; 2007 May; 22(11):2429-35. PubMed ID: 17035000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterning of cantilevers with inverted dip-pen nanolithography: efforts toward combinatorial AFM.
    Wu SY; Berkenbosch R; Lui A; Green JB
    Analyst; 2006 Nov; 131(11):1213-5. PubMed ID: 17066189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropatterning of porous silicon films by direct laser writing.
    Khung YL; Graney SD; Voelcker NH
    Biotechnol Prog; 2006; 22(5):1388-93. PubMed ID: 17022678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated myotube formation using bioprinting technology for biosensor applications.
    Cui X; Gao G; Qiu Y
    Biotechnol Lett; 2013 Mar; 35(3):315-21. PubMed ID: 23160742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-cell chip fabrication and applications.
    Chun H; Lee DS; Kim HC
    Methods Mol Biol; 2009; 509():145-58. PubMed ID: 19212720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent observation of individual cellular binding events to field-effect transistors.
    Schäfer S; Eick S; Hofmann B; Dufaux T; Stockmann R; Wrobel G; Offenhäusser A; Ingebrandt S
    Biosens Bioelectron; 2009 Jan; 24(5):1201-8. PubMed ID: 18692383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociated flexor digitorum brevis myofiber culture system--a more mature muscle culture system.
    Ravenscroft G; Nowak KJ; Jackaman C; Clément S; Lyons MA; Gallagher S; Bakker AJ; Laing NG
    Cell Motil Cytoskeleton; 2007 Oct; 64(10):727-38. PubMed ID: 17654606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator.
    Fujita H; Van Dau T; Shimizu K; Hatsuda R; Sugiyama S; Nagamori E
    Biomed Microdevices; 2011 Feb; 13(1):123-9. PubMed ID: 20957437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking cancer cell proliferation on a CMOS capacitance sensor chip.
    Prakash SB; Abshire P
    Biosens Bioelectron; 2008 May; 23(10):1449-57. PubMed ID: 18281207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.