These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
35. Novel dome-shaped structures for high-efficiency patterning of individual microbeads in a microfluidic device. Lim CT; Zhang Y Small; 2007 Apr; 3(4):573-9. PubMed ID: 17351990 [No Abstract] [Full Text] [Related]
36. Fabrication of three-dimensional microarray structures by controlling the thickness and elasticity of poly(dimethylsiloxane) membrane. Lee DH; Park JY; Lee EJ; Choi YY; Kwon GH; Kim BM; Lee SH Biomed Microdevices; 2010 Feb; 12(1):49-54. PubMed ID: 19777351 [TBL] [Abstract][Full Text] [Related]
37. Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates. Taylor JD; Phillips KS; Cheng Q Lab Chip; 2007 Jul; 7(7):927-30. PubMed ID: 17594015 [TBL] [Abstract][Full Text] [Related]
38. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Kim SM; Burns MA; Hasselbrink EF Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895 [TBL] [Abstract][Full Text] [Related]
39. Surface modification of poly(dimethylsiloxane) with a perfluorinated alkoxysilane for selectivity toward fluorous tagged peptides. Wang D; Goel V; Oleschuk RD; Horton JH Langmuir; 2008 Feb; 24(3):1080-6. PubMed ID: 18163653 [TBL] [Abstract][Full Text] [Related]
40. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth. Lim H; Moon S Biomed Microdevices; 2015 Aug; 17(4):70. PubMed ID: 26112614 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]