These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
726 related articles for article (PubMed ID: 17594014)
41. Plastic-PDMS bonding for high pressure hydrolytically stable active microfluidics. Lee KS; Ram RJ Lab Chip; 2009 Jun; 9(11):1618-24. PubMed ID: 19458871 [TBL] [Abstract][Full Text] [Related]
42. A facile "liquid-molding" method to fabricate PDMS microdevices with 3-dimensional channel topography. Liu X; Wang Q; Qin J; Lin B Lab Chip; 2009 May; 9(9):1200-5. PubMed ID: 19370237 [TBL] [Abstract][Full Text] [Related]
43. Microfiber-directed boundary flow in press-fit microdevices fabricated from self-adhesive hydrophobic surfaces. Huang TT; Taylor DG; Sedlak M; Mosier NS; Ladisch MR Anal Chem; 2005 Jun; 77(11):3671-5. PubMed ID: 15924403 [TBL] [Abstract][Full Text] [Related]
44. A microfluidic multi-injector for gradient generation. Chung BG; Lin F; Jeon NL Lab Chip; 2006 Jun; 6(6):764-8. PubMed ID: 16738728 [TBL] [Abstract][Full Text] [Related]
51. Towards single molecule analysis in PDMS microdevices: from the detection of ultra low dye concentrations to single DNA molecule studies. Ros A; Hellmich W; Duong T; Anselmetti D J Biotechnol; 2004 Aug; 112(1-2):65-72. PubMed ID: 15288941 [TBL] [Abstract][Full Text] [Related]
52. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Vollmer AP; Probstein RF; Gilbert R; Thorsen T Lab Chip; 2005 Oct; 5(10):1059-66. PubMed ID: 16175261 [TBL] [Abstract][Full Text] [Related]
53. Electroosmotic flow in a poly(dimethylsiloxane) channel does not depend on percent curing agent. Wheeler AR; Trapp G; Trapp O; Zare RN Electrophoresis; 2004 Apr; 25(7-8):1120-4. PubMed ID: 15095455 [TBL] [Abstract][Full Text] [Related]
54. Design and fabrication of chemically robust three-dimensional microfluidic valves. Maltezos G; Garcia E; Hanrahan G; Gomez FA; Vyawahare S; van Dam RM; Chen Y; Scherer A Lab Chip; 2007 Sep; 7(9):1209-11. PubMed ID: 17713623 [TBL] [Abstract][Full Text] [Related]
55. Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip. Matsui T; Franzke J; Manz A; Janasek D Electrophoresis; 2007 Dec; 28(24):4606-11. PubMed ID: 18008305 [TBL] [Abstract][Full Text] [Related]
56. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Sia SK; Whitesides GM Electrophoresis; 2003 Nov; 24(21):3563-76. PubMed ID: 14613181 [TBL] [Abstract][Full Text] [Related]
58. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices. Chun MS; Shim MS; Choi NW Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042 [TBL] [Abstract][Full Text] [Related]
59. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Kim J; Surapaneni R; Gale BK Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251 [TBL] [Abstract][Full Text] [Related]
60. Microfluidic "thin chips" for chemical separations. Gaspar A; Salgado M; Stevens S; Gomez FA Electrophoresis; 2010 Aug; 31(15):2520-5. PubMed ID: 20603825 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]