These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 17594016)

  • 1. A toner-mediated lithographic technology for rapid prototyping of glass microchannels.
    Coltro WK; Piccin E; Fracassi da Silva JA; Lucio do Lago C; Carrilho E
    Lab Chip; 2007 Jul; 7(7):931-4. PubMed ID: 17594016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic devices obtained by thermal toner transferring on glass substrate.
    do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA
    Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoresis microchip fabricated by a direct-printing process with end-channel amperometric detection.
    Coltro WK; da Silva JA; da Silva HD; Richter EM; Furlan R; Angnes L; do Lago CL; Mazo LH; Carrilho E
    Electrophoresis; 2004 Nov; 25(21-22):3832-9. PubMed ID: 15565680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Printed circuit technology for fabrication of plastic-based microfluidic devices.
    Sudarsan AP; Ugaz VM
    Anal Chem; 2004 Jun; 76(11):3229-35. PubMed ID: 15167806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of glass microchannels by xurography for electrophoresis applications.
    Pessoa de Santana P; Segato TP; Carrilho E; Lima RS; Dossi N; Kamogawa MY; Gobbi AL; Piazzeta MH; Piccin E
    Analyst; 2013 Mar; 138(6):1660-4. PubMed ID: 23392529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates.
    Segato TP; Coltro WK; Almeida AL; Piazetta MH; Gobbi AL; Mazo LH; Carrilho E
    Electrophoresis; 2010 Aug; 31(15):2526-33. PubMed ID: 20665913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low temperature bonding of quartz microfluidic chip for serum lipoproteins analysis.
    Zhuang G; Jin Q; Liu J; Cong H; Liu K; Zhao J; Yang M; Wang H
    Biomed Microdevices; 2006 Sep; 8(3):255-61. PubMed ID: 16799750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation.
    Fogarty BA; Heppert KE; Cory TJ; Hulbutta KR; Martin RS; Lunte SM
    Analyst; 2005 Jun; 130(6):924-30. PubMed ID: 15912242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple approaches to close the open structure of microfluidic chips and connecting them to the macro-world.
    Székely L; Guttman A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 841(1-2):123-8. PubMed ID: 16597517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner electrophoresis microchips.
    Coltro WK; da Silva JA; Carrilho E
    Electrophoresis; 2008 Jun; 29(11):2260-5. PubMed ID: 18446805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchip free-flow electrophoresis on glass substrate using laser-printing toner as structural material.
    Pereira de Jesus D; Blanes L; do Lago CL
    Electrophoresis; 2006 Dec; 27(24):4935-42. PubMed ID: 17161008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toner and paper-based fabrication techniques for microfluidic applications.
    Coltro WK; de Jesus DP; da Silva JA; do Lago CL; Carrilho E
    Electrophoresis; 2010 Aug; 31(15):2487-98. PubMed ID: 20665911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis.
    Guijt RM; Baltussen E; van der Steen G; Frank H; Billiet H; Schalkhammer T; Laugere F; Vellekoop M; Berthold A; Sarro L; van Dedem GW
    Electrophoresis; 2001 Aug; 22(12):2537-41. PubMed ID: 11519958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid prototyping of polymeric electrophoresis microchips with integrated electrodes for contactless conductivity detection.
    Tomazelli Coltro WK; Fracassi da Silva JA; Carrilho E
    Anal Methods; 2011 Jan; 3(1):168-172. PubMed ID: 32938126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner.
    Gabriel EF; do Lago CL; Gobbi ÅL; Carrilho E; Coltro WK
    Electrophoresis; 2013 Aug; 34(15):2169-76. PubMed ID: 23712918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner.
    Coltro WK; Lunte SM; Carrilho E
    Electrophoresis; 2008 Dec; 29(24):4928-37. PubMed ID: 19025869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid prototyping of microfluidic devices with a wax printer.
    Kaigala GV; Ho S; Penterman R; Backhouse CJ
    Lab Chip; 2007 Mar; 7(3):384-7. PubMed ID: 17330171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.