These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 17594016)

  • 41. Micro wet analysis system using multi-phase laminar flows in three-dimensional microchannel network.
    Kikutani Y; Hisamoto H; Tokeshi M; Kitamori T
    Lab Chip; 2004 Aug; 4(4):328-32. PubMed ID: 15269799
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding.
    Abgrall P; Low LN; Nguyen NT
    Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coating of powder-blasted channels for high-performance microchip electrophoresis.
    Belder D; Kohler F; Ludwig M; Tolba K; Piehl N
    Electrophoresis; 2006 Aug; 27(16):3277-83. PubMed ID: 16858723
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Control and detection of chemical reactions in microfluidic systems.
    DeMello AJ
    Nature; 2006 Jul; 442(7101):394-402. PubMed ID: 16871207
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduction of the impedance of a contactless conductivity detector for microchip capillary electrophoresis: compensation of the electrode impedance by addition of a series inductance from a piezoelectric quartz crystal.
    Kang Q; Shen D; Li Q; Hu Q; Dong J; Du J; Tang B
    Anal Chem; 2008 Oct; 80(20):7826-32. PubMed ID: 18781773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Leveraging liquid dielectrophoresis for microfluidic applications.
    Chugh D; Kaler KV
    Biomed Mater; 2008 Sep; 3(3):034009. PubMed ID: 18708707
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip.
    Duarte GR; Price CW; Augustine BH; Carrilho E; Landers JP
    Anal Chem; 2011 Jul; 83(13):5182-9. PubMed ID: 21557576
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An integrated microfluidic device for influenza and other genetic analyses.
    Pal R; Yang M; Lin R; Johnson BN; Srivastava N; Razzacki SZ; Chomistek KJ; Heldsinger DC; Haque RM; Ugaz VM; Thwar PK; Chen Z; Alfano K; Yim MB; Krishnan M; Fuller AO; Larson RG; Burke DT; Burns MA
    Lab Chip; 2005 Oct; 5(10):1024-32. PubMed ID: 16175256
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wet-etching of structures with straight facets and adjustable taper into glass substrates.
    Pekas N; Zhang Q; Nannini M; Juncker D
    Lab Chip; 2010 Feb; 10(4):494-8. PubMed ID: 20126690
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics.
    Hooshmand T; Parvizi S; Keshvad A
    J Prosthodont; 2008 Jul; 17(5):415-9. PubMed ID: 18482364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polyester-toner electrophoresis microchips with improved analytical performance and extended lifetime.
    Gabriel EF; Duarte Junior GF; Garcia Pde T; de Jesus DP; Coltro WK
    Electrophoresis; 2012 Sep; 33(17):2660-7. PubMed ID: 22965709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A rejuvenation method for poly(N,N-dimethylacrylamide)-coated glass microfluidic chips.
    Ma R; Crabtree HJ; Backhouse CJ
    Electrophoresis; 2005 Jul; 26(14):2692-700. PubMed ID: 15981296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfabricated in-channel structured polydimethylsiloxane microfluidic system for a lab-on-a-chip.
    Ra GS; Yoo JC; Kang CJ; Kim YS
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4588-92. PubMed ID: 19049064
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Honey, I shrunk the lab.
    Knight J
    Nature; 2002 Aug; 418(6897):474-5. PubMed ID: 12152048
    [No Abstract]   [Full Text] [Related]  

  • 58. In-plane alloy electrodes for capacitively coupled contactless conductivity detection in poly(methylmethacrylate) electrophoretic chips.
    Gaudry AJ; Breadmore MC; Guijt RM
    Electrophoresis; 2013 Nov; 34(20-21):2980-7. PubMed ID: 23925858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay.
    Lu Y; Shi W; Jiang L; Qin J; Lin B
    Electrophoresis; 2009 May; 30(9):1497-500. PubMed ID: 19340829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.