BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 17594087)

  • 21. Biodegradation of dimethyl phthalate by Sphingomonas sp. isolated from phthalic-acid-degrading aerobic granules.
    Zeng P; Moy BY; Song YH; Tay JH
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):899-905. PubMed ID: 18751698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial degradation of 7-ketocholesterol.
    Mathieu J; Schloendorn J; Rittmann BE; Alvarez PJ
    Biodegradation; 2008 Nov; 19(6):807-13. PubMed ID: 18344006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological degradation of PVA/CH blends in terrestrial and aquatic conditions.
    Lesinský D; Fritz J; Braun R
    Bioresour Technol; 2005 Jan; 96(2):197-201. PubMed ID: 15381216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation of PVA by the new mixed strains isolated from a de-sizing process.
    Guo Y; Zhou M; Cui SK; Nian N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(5):518-25. PubMed ID: 23383637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity.
    Zhang J; Sun Z; Li Y; Peng X; Li W; Yan Y
    J Hazard Mater; 2009 Apr; 163(2-3):723-8. PubMed ID: 18718714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 17beta-estradiol-utilizing bacterium, Sphingomonas strain KC8: part I - characterization and abundance in wastewater treatment plants.
    Roh H; Chu KH
    Environ Sci Technol; 2010 Jul; 44(13):4943-50. PubMed ID: 20527759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14.
    de Carvalho CC; da Fonseca MM
    FEMS Microbiol Ecol; 2005 Feb; 51(3):389-99. PubMed ID: 16329886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immobilization of hydrocarbon-oxidizing bacteria in poly(vinyl alcohol) cryogels hydrophobized using a biosurfactant.
    Kuyukina MS; Ivshina IB; Gavrin AY; Podorozhko EA; Lozinsky VI; Jeffree CE; Philp JC
    J Microbiol Methods; 2006 Jun; 65(3):596-603. PubMed ID: 16316701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aerobic degradation of diethyl phthalate by Sphingomonas sp.
    Fang HH; Liang D; Zhang T
    Bioresour Technol; 2007 Feb; 98(3):717-20. PubMed ID: 16563747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions.
    de Carvalho CC
    Res Microbiol; 2012 Feb; 163(2):125-36. PubMed ID: 22146587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of nutrient component for diesel oil degradation by Rhodococcus erythropolis.
    Huang L; Ma T; Li D; Liang FL; Liu RL; Li GQ
    Mar Pollut Bull; 2008 Oct; 56(10):1714-8. PubMed ID: 18778839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures.
    Gou M; Qu Y; Zhou J; Ma F; Tan L
    J Hazard Mater; 2009 Oct; 170(1):314-9. PubMed ID: 19473759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of 2,5-dimethylpyrazine by Rhodococcus erythropolis strain DP-45 isolated from a waste gas treatment plant of a fishmeal processing company.
    Rappert S; Li R; Kokova M; Antholz M; Nagorny S; Francke W; Müller R
    Biodegradation; 2007 Oct; 18(5):585-96. PubMed ID: 17120096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.
    Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R
    J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation analysis of polyvinyl alcohol during the compost burial course.
    Liu Y; Deng Y; Chen P; Duan M; Lin X; Zhang Y
    J Basic Microbiol; 2019 Apr; 59(4):368-374. PubMed ID: 30693540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of four Rhodococcus alcohol dehydrogenase genes responsible for the oxidation of aromatic alcohols.
    Peng X; Taki H; Komukai S; Sekine M; Kanoh K; Kasai H; Choi SK; Omata S; Tanikawa S; Harayama S; Misawa N
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):824-32. PubMed ID: 16292529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Haloalkane hydrolysis by Rhodococcus erythropolis cells: comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation.
    Erable B; Goubet I; Lamare S; Legoy MD; Maugard T
    Biotechnol Bioeng; 2004 Apr; 86(1):47-54. PubMed ID: 15007840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel.
    El-Naas MH; Al-Muhtaseb SA; Makhlouf S
    J Hazard Mater; 2009 May; 164(2-3):720-5. PubMed ID: 18829170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyrroloquinoline Quinone-Dependent Cytochrome Reduction in Polyvinyl Alcohol-Degrading Pseudomonas sp. Strain VM15C.
    Shimao M; Onishi S; Kato N; Sakazawa C
    Appl Environ Microbiol; 1989 Feb; 55(2):275-8. PubMed ID: 16347841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron.
    Oh SY; Kim HW; Park JM; Park HS; Yoon C
    J Hazard Mater; 2009 Aug; 168(1):346-51. PubMed ID: 19285795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.